ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvga GIF version

Theorem algcvga 12219
Description: The countdown function 𝐶 remains 0 after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:𝑆𝑆
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvga.3 𝐶:𝑆⟶ℕ0
algcvga.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvga.5 𝑁 = (𝐶𝐴)
Assertion
Ref Expression
algcvga (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝐾(𝑧)   𝑁(𝑧)

Proof of Theorem algcvga
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3 𝑁 = (𝐶𝐴)
2 algcvga.3 . . . 4 𝐶:𝑆⟶ℕ0
32ffvelcdmi 5696 . . 3 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
41, 3eqeltrid 2283 . 2 (𝐴𝑆𝑁 ∈ ℕ0)
5 nn0z 9346 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 eluz1 9605 . . . . 5 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑁𝐾)))
7 2fveq3 5563 . . . . . . . . 9 (𝑚 = 𝑁 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝑁)))
87eqeq1d 2205 . . . . . . . 8 (𝑚 = 𝑁 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝑁)) = 0))
98imbi2d 230 . . . . . . 7 (𝑚 = 𝑁 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)))
10 2fveq3 5563 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝑘)))
1110eqeq1d 2205 . . . . . . . 8 (𝑚 = 𝑘 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝑘)) = 0))
1211imbi2d 230 . . . . . . 7 (𝑚 = 𝑘 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝑘)) = 0)))
13 2fveq3 5563 . . . . . . . . 9 (𝑚 = (𝑘 + 1) → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅‘(𝑘 + 1))))
1413eqeq1d 2205 . . . . . . . 8 (𝑚 = (𝑘 + 1) → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅‘(𝑘 + 1))) = 0))
1514imbi2d 230 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
16 2fveq3 5563 . . . . . . . . 9 (𝑚 = 𝐾 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝐾)))
1716eqeq1d 2205 . . . . . . . 8 (𝑚 = 𝐾 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝐾)) = 0))
1817imbi2d 230 . . . . . . 7 (𝑚 = 𝐾 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
19 algcvga.1 . . . . . . . . 9 𝐹:𝑆𝑆
20 algcvga.2 . . . . . . . . 9 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
21 algcvga.4 . . . . . . . . 9 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
2219, 20, 2, 21, 1algcvg 12216 . . . . . . . 8 (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
2322a1i 9 . . . . . . 7 (𝑁 ∈ ℤ → (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0))
24 nn0ge0 9274 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
2524adantr 276 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → 0 ≤ 𝑁)
26 nn0re 9258 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27 zre 9330 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
28 0re 8026 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
29 letr 8109 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3028, 29mp3an1 1335 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3126, 27, 30syl2an 289 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3225, 31mpand 429 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁𝑘 → 0 ≤ 𝑘))
33 elnn0z 9339 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
3433simplbi2 385 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (0 ≤ 𝑘𝑘 ∈ ℕ0))
3534adantl 277 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (0 ≤ 𝑘𝑘 ∈ ℕ0))
3632, 35syld 45 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁𝑘𝑘 ∈ ℕ0))
374, 36sylan 283 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ ℤ) → (𝑁𝑘𝑘 ∈ ℕ0))
3837impr 379 . . . . . . . . . . . 12 ((𝐴𝑆 ∧ (𝑘 ∈ ℤ ∧ 𝑁𝑘)) → 𝑘 ∈ ℕ0)
3938expcom 116 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆𝑘 ∈ ℕ0))
40393adant1 1017 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆𝑘 ∈ ℕ0))
4140ancld 325 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆 → (𝐴𝑆𝑘 ∈ ℕ0)))
42 nn0uz 9636 . . . . . . . . . . . . 13 0 = (ℤ‘0)
43 0zd 9338 . . . . . . . . . . . . 13 (𝐴𝑆 → 0 ∈ ℤ)
44 id 19 . . . . . . . . . . . . 13 (𝐴𝑆𝐴𝑆)
4519a1i 9 . . . . . . . . . . . . 13 (𝐴𝑆𝐹:𝑆𝑆)
4642, 20, 43, 44, 45algrf 12213 . . . . . . . . . . . 12 (𝐴𝑆𝑅:ℕ0𝑆)
4746ffvelcdmda 5697 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
48 2fveq3 5563 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (𝐶‘(𝐹𝑧)) = (𝐶‘(𝐹‘(𝑅𝑘))))
4948neeq1d 2385 . . . . . . . . . . . . . 14 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
50 fveq2 5558 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
5148, 50breq12d 4046 . . . . . . . . . . . . . 14 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) < (𝐶𝑧) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
5249, 51imbi12d 234 . . . . . . . . . . . . 13 (𝑧 = (𝑅𝑘) → (((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘)))))
5352, 21vtoclga 2830 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
5419, 2algcvgb 12218 . . . . . . . . . . . . 13 ((𝑅𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ↔ (((𝐶‘(𝑅𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ∧ ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))))
55 simpr 110 . . . . . . . . . . . . 13 ((((𝐶‘(𝑅𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ∧ ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0)) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5654, 55biimtrdi 163 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0)))
5753, 56mpd 13 . . . . . . . . . . 11 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5847, 57syl 14 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5942, 20, 43, 44, 45algrp1 12214 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
6059fveqeq2d 5566 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅‘(𝑘 + 1))) = 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
6158, 60sylibrd 169 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0))
6241, 61syl6 33 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
6362a2d 26 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → ((𝐴𝑆 → (𝐶‘(𝑅𝑘)) = 0) → (𝐴𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
649, 12, 15, 18, 23, 63uzind 9437 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0))
65643expib 1208 . . . . 5 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑁𝐾) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
666, 65sylbid 150 . . . 4 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
675, 66syl 14 . . 3 (𝑁 ∈ ℕ0 → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
6867com3r 79 . 2 (𝐴𝑆 → (𝑁 ∈ ℕ0 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0)))
694, 68mpd 13 1 (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wne 2367  {csn 3622   class class class wbr 4033   × cxp 4661  ccom 4667  wf 5254  cfv 5258  (class class class)co 5922  1st c1st 6196  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061  cle 8062  0cn0 9249  cz 9326  cuz 9601  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540
This theorem is referenced by:  algfx  12220  eucalgcvga  12226
  Copyright terms: Public domain W3C validator