ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvga GIF version

Theorem algcvga 11460
Description: The countdown function 𝐶 remains 0 after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:𝑆𝑆
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvga.3 𝐶:𝑆⟶ℕ0
algcvga.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvga.5 𝑁 = (𝐶𝐴)
Assertion
Ref Expression
algcvga (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝐾(𝑧)   𝑁(𝑧)

Proof of Theorem algcvga
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3 𝑁 = (𝐶𝐴)
2 algcvga.3 . . . 4 𝐶:𝑆⟶ℕ0
32ffvelrni 5472 . . 3 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
41, 3syl5eqel 2181 . 2 (𝐴𝑆𝑁 ∈ ℕ0)
5 nn0z 8868 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 eluz1 9122 . . . . 5 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑁𝐾)))
7 2fveq3 5345 . . . . . . . . 9 (𝑚 = 𝑁 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝑁)))
87eqeq1d 2103 . . . . . . . 8 (𝑚 = 𝑁 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝑁)) = 0))
98imbi2d 229 . . . . . . 7 (𝑚 = 𝑁 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)))
10 2fveq3 5345 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝑘)))
1110eqeq1d 2103 . . . . . . . 8 (𝑚 = 𝑘 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝑘)) = 0))
1211imbi2d 229 . . . . . . 7 (𝑚 = 𝑘 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝑘)) = 0)))
13 2fveq3 5345 . . . . . . . . 9 (𝑚 = (𝑘 + 1) → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅‘(𝑘 + 1))))
1413eqeq1d 2103 . . . . . . . 8 (𝑚 = (𝑘 + 1) → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅‘(𝑘 + 1))) = 0))
1514imbi2d 229 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
16 2fveq3 5345 . . . . . . . . 9 (𝑚 = 𝐾 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝐾)))
1716eqeq1d 2103 . . . . . . . 8 (𝑚 = 𝐾 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝐾)) = 0))
1817imbi2d 229 . . . . . . 7 (𝑚 = 𝐾 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
19 algcvga.1 . . . . . . . . 9 𝐹:𝑆𝑆
20 algcvga.2 . . . . . . . . 9 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
21 algcvga.4 . . . . . . . . 9 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
2219, 20, 2, 21, 1algcvg 11457 . . . . . . . 8 (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
2322a1i 9 . . . . . . 7 (𝑁 ∈ ℤ → (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0))
24 nn0ge0 8796 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
2524adantr 271 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → 0 ≤ 𝑁)
26 nn0re 8780 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27 zre 8852 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
28 0re 7585 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
29 letr 7665 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3028, 29mp3an1 1267 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3126, 27, 30syl2an 284 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3225, 31mpand 421 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁𝑘 → 0 ≤ 𝑘))
33 elnn0z 8861 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
3433simplbi2 378 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (0 ≤ 𝑘𝑘 ∈ ℕ0))
3534adantl 272 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (0 ≤ 𝑘𝑘 ∈ ℕ0))
3632, 35syld 45 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁𝑘𝑘 ∈ ℕ0))
374, 36sylan 278 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ ℤ) → (𝑁𝑘𝑘 ∈ ℕ0))
3837impr 372 . . . . . . . . . . . 12 ((𝐴𝑆 ∧ (𝑘 ∈ ℤ ∧ 𝑁𝑘)) → 𝑘 ∈ ℕ0)
3938expcom 115 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆𝑘 ∈ ℕ0))
40393adant1 964 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆𝑘 ∈ ℕ0))
4140ancld 319 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆 → (𝐴𝑆𝑘 ∈ ℕ0)))
42 nn0uz 9152 . . . . . . . . . . . . 13 0 = (ℤ‘0)
43 0zd 8860 . . . . . . . . . . . . 13 (𝐴𝑆 → 0 ∈ ℤ)
44 id 19 . . . . . . . . . . . . 13 (𝐴𝑆𝐴𝑆)
4519a1i 9 . . . . . . . . . . . . 13 (𝐴𝑆𝐹:𝑆𝑆)
4642, 20, 43, 44, 45algrf 11454 . . . . . . . . . . . 12 (𝐴𝑆𝑅:ℕ0𝑆)
4746ffvelrnda 5473 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
48 2fveq3 5345 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (𝐶‘(𝐹𝑧)) = (𝐶‘(𝐹‘(𝑅𝑘))))
4948neeq1d 2280 . . . . . . . . . . . . . 14 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
50 fveq2 5340 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
5148, 50breq12d 3880 . . . . . . . . . . . . . 14 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) < (𝐶𝑧) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
5249, 51imbi12d 233 . . . . . . . . . . . . 13 (𝑧 = (𝑅𝑘) → (((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘)))))
5352, 21vtoclga 2699 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
5419, 2algcvgb 11459 . . . . . . . . . . . . 13 ((𝑅𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ↔ (((𝐶‘(𝑅𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ∧ ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))))
55 simpr 109 . . . . . . . . . . . . 13 ((((𝐶‘(𝑅𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ∧ ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0)) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5654, 55syl6bi 162 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0)))
5753, 56mpd 13 . . . . . . . . . . 11 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5847, 57syl 14 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5942, 20, 43, 44, 45algrp1 11455 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
6059fveqeq2d 5348 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅‘(𝑘 + 1))) = 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
6158, 60sylibrd 168 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0))
6241, 61syl6 33 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
6362a2d 26 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → ((𝐴𝑆 → (𝐶‘(𝑅𝑘)) = 0) → (𝐴𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
649, 12, 15, 18, 23, 63uzind 8956 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0))
65643expib 1149 . . . . 5 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑁𝐾) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
666, 65sylbid 149 . . . 4 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
675, 66syl 14 . . 3 (𝑁 ∈ ℕ0 → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
6867com3r 79 . 2 (𝐴𝑆 → (𝑁 ∈ ℕ0 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0)))
694, 68mpd 13 1 (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 927   = wceq 1296  wcel 1445  wne 2262  {csn 3466   class class class wbr 3867   × cxp 4465  ccom 4471  wf 5045  cfv 5049  (class class class)co 5690  1st c1st 5947  cr 7446  0cc0 7447  1c1 7448   + caddc 7450   < clt 7619  cle 7620  0cn0 8771  cz 8848  cuz 9118  seqcseq 10000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-seqfrec 10001
This theorem is referenced by:  algfx  11461  eucalgcvga  11467
  Copyright terms: Public domain W3C validator