ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvga GIF version

Theorem algcvga 11998
Description: The countdown function 𝐶 remains 0 after 𝑁 steps. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
algcvga.1 𝐹:𝑆𝑆
algcvga.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvga.3 𝐶:𝑆⟶ℕ0
algcvga.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvga.5 𝑁 = (𝐶𝐴)
Assertion
Ref Expression
algcvga (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝐾(𝑧)   𝑁(𝑧)

Proof of Theorem algcvga
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algcvga.5 . . 3 𝑁 = (𝐶𝐴)
2 algcvga.3 . . . 4 𝐶:𝑆⟶ℕ0
32ffvelrni 5628 . . 3 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
41, 3eqeltrid 2257 . 2 (𝐴𝑆𝑁 ∈ ℕ0)
5 nn0z 9225 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 eluz1 9484 . . . . 5 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑁𝐾)))
7 2fveq3 5499 . . . . . . . . 9 (𝑚 = 𝑁 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝑁)))
87eqeq1d 2179 . . . . . . . 8 (𝑚 = 𝑁 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝑁)) = 0))
98imbi2d 229 . . . . . . 7 (𝑚 = 𝑁 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)))
10 2fveq3 5499 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝑘)))
1110eqeq1d 2179 . . . . . . . 8 (𝑚 = 𝑘 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝑘)) = 0))
1211imbi2d 229 . . . . . . 7 (𝑚 = 𝑘 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝑘)) = 0)))
13 2fveq3 5499 . . . . . . . . 9 (𝑚 = (𝑘 + 1) → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅‘(𝑘 + 1))))
1413eqeq1d 2179 . . . . . . . 8 (𝑚 = (𝑘 + 1) → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅‘(𝑘 + 1))) = 0))
1514imbi2d 229 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
16 2fveq3 5499 . . . . . . . . 9 (𝑚 = 𝐾 → (𝐶‘(𝑅𝑚)) = (𝐶‘(𝑅𝐾)))
1716eqeq1d 2179 . . . . . . . 8 (𝑚 = 𝐾 → ((𝐶‘(𝑅𝑚)) = 0 ↔ (𝐶‘(𝑅𝐾)) = 0))
1817imbi2d 229 . . . . . . 7 (𝑚 = 𝐾 → ((𝐴𝑆 → (𝐶‘(𝑅𝑚)) = 0) ↔ (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
19 algcvga.1 . . . . . . . . 9 𝐹:𝑆𝑆
20 algcvga.2 . . . . . . . . 9 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
21 algcvga.4 . . . . . . . . 9 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
2219, 20, 2, 21, 1algcvg 11995 . . . . . . . 8 (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
2322a1i 9 . . . . . . 7 (𝑁 ∈ ℤ → (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0))
24 nn0ge0 9153 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
2524adantr 274 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → 0 ≤ 𝑁)
26 nn0re 9137 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27 zre 9209 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℤ → 𝑘 ∈ ℝ)
28 0re 7913 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
29 letr 7995 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3028, 29mp3an1 1319 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℝ ∧ 𝑘 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3126, 27, 30syl2an 287 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((0 ≤ 𝑁𝑁𝑘) → 0 ≤ 𝑘))
3225, 31mpand 427 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁𝑘 → 0 ≤ 𝑘))
33 elnn0z 9218 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℤ ∧ 0 ≤ 𝑘))
3433simplbi2 383 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℤ → (0 ≤ 𝑘𝑘 ∈ ℕ0))
3534adantl 275 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (0 ≤ 𝑘𝑘 ∈ ℕ0))
3632, 35syld 45 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁𝑘𝑘 ∈ ℕ0))
374, 36sylan 281 . . . . . . . . . . . . 13 ((𝐴𝑆𝑘 ∈ ℤ) → (𝑁𝑘𝑘 ∈ ℕ0))
3837impr 377 . . . . . . . . . . . 12 ((𝐴𝑆 ∧ (𝑘 ∈ ℤ ∧ 𝑁𝑘)) → 𝑘 ∈ ℕ0)
3938expcom 115 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆𝑘 ∈ ℕ0))
40393adant1 1010 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆𝑘 ∈ ℕ0))
4140ancld 323 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆 → (𝐴𝑆𝑘 ∈ ℕ0)))
42 nn0uz 9514 . . . . . . . . . . . . 13 0 = (ℤ‘0)
43 0zd 9217 . . . . . . . . . . . . 13 (𝐴𝑆 → 0 ∈ ℤ)
44 id 19 . . . . . . . . . . . . 13 (𝐴𝑆𝐴𝑆)
4519a1i 9 . . . . . . . . . . . . 13 (𝐴𝑆𝐹:𝑆𝑆)
4642, 20, 43, 44, 45algrf 11992 . . . . . . . . . . . 12 (𝐴𝑆𝑅:ℕ0𝑆)
4746ffvelrnda 5629 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
48 2fveq3 5499 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (𝐶‘(𝐹𝑧)) = (𝐶‘(𝐹‘(𝑅𝑘))))
4948neeq1d 2358 . . . . . . . . . . . . . 14 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
50 fveq2 5494 . . . . . . . . . . . . . . 15 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
5148, 50breq12d 4000 . . . . . . . . . . . . . 14 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) < (𝐶𝑧) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
5249, 51imbi12d 233 . . . . . . . . . . . . 13 (𝑧 = (𝑅𝑘) → (((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘)))))
5352, 21vtoclga 2796 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
5419, 2algcvgb 11997 . . . . . . . . . . . . 13 ((𝑅𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ↔ (((𝐶‘(𝑅𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ∧ ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))))
55 simpr 109 . . . . . . . . . . . . 13 ((((𝐶‘(𝑅𝑘)) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) ∧ ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0)) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5654, 55syl6bi 162 . . . . . . . . . . . 12 ((𝑅𝑘) ∈ 𝑆 → (((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0)))
5753, 56mpd 13 . . . . . . . . . . 11 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5847, 57syl 14 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
5942, 20, 43, 44, 45algrp1 11993 . . . . . . . . . . 11 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
6059fveqeq2d 5502 . . . . . . . . . 10 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅‘(𝑘 + 1))) = 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) = 0))
6158, 60sylibrd 168 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0))
6241, 61syl6 33 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → (𝐴𝑆 → ((𝐶‘(𝑅𝑘)) = 0 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
6362a2d 26 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑁𝑘) → ((𝐴𝑆 → (𝐶‘(𝑅𝑘)) = 0) → (𝐴𝑆 → (𝐶‘(𝑅‘(𝑘 + 1))) = 0)))
649, 12, 15, 18, 23, 63uzind 9316 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁𝐾) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0))
65643expib 1201 . . . . 5 (𝑁 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑁𝐾) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
666, 65sylbid 149 . . . 4 (𝑁 ∈ ℤ → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
675, 66syl 14 . . 3 (𝑁 ∈ ℕ0 → (𝐾 ∈ (ℤ𝑁) → (𝐴𝑆 → (𝐶‘(𝑅𝐾)) = 0)))
6867com3r 79 . 2 (𝐴𝑆 → (𝑁 ∈ ℕ0 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0)))
694, 68mpd 13 1 (𝐴𝑆 → (𝐾 ∈ (ℤ𝑁) → (𝐶‘(𝑅𝐾)) = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wne 2340  {csn 3581   class class class wbr 3987   × cxp 4607  ccom 4613  wf 5192  cfv 5196  (class class class)co 5851  1st c1st 6115  cr 7766  0cc0 7767  1c1 7768   + caddc 7770   < clt 7947  cle 7948  0cn0 9128  cz 9205  cuz 9480  seqcseq 10394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-n0 9129  df-z 9206  df-uz 9481  df-seqfrec 10395
This theorem is referenced by:  algfx  11999  eucalgcvga  12005
  Copyright terms: Public domain W3C validator