ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpossx GIF version

Theorem dmmpossx 6254
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpox.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpossx dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpossx
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2336 . . . . 5 𝑢𝐵
2 nfcsb1v 3114 . . . . 5 𝑥𝑢 / 𝑥𝐵
3 nfcv 2336 . . . . 5 𝑢𝐶
4 nfcv 2336 . . . . 5 𝑣𝐶
5 nfcsb1v 3114 . . . . 5 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
6 nfcv 2336 . . . . . 6 𝑦𝑢
7 nfcsb1v 3114 . . . . . 6 𝑦𝑣 / 𝑦𝐶
86, 7nfcsb 3119 . . . . 5 𝑦𝑢 / 𝑥𝑣 / 𝑦𝐶
9 csbeq1a 3090 . . . . 5 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
10 csbeq1a 3090 . . . . . 6 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
11 csbeq1a 3090 . . . . . 6 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
1210, 11sylan9eqr 2248 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
131, 2, 3, 4, 5, 8, 9, 12cbvmpox 5997 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
14 fmpox.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
15 vex 2763 . . . . . . . 8 𝑢 ∈ V
16 vex 2763 . . . . . . . 8 𝑣 ∈ V
1715, 16op1std 6203 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) = 𝑢)
1817csbeq1d 3088 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶)
1915, 16op2ndd 6204 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) = 𝑣)
2019csbeq1d 3088 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
2120csbeq2dv 3107 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2218, 21eqtrd 2226 . . . . 5 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2322mpomptx 6010 . . . 4 (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
2413, 14, 233eqtr4i 2224 . . 3 𝐹 = (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶)
2524dmmptss 5163 . 2 dom 𝐹 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
26 nfcv 2336 . . 3 𝑢({𝑥} × 𝐵)
27 nfcv 2336 . . . 4 𝑥{𝑢}
2827, 2nfxp 4687 . . 3 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
29 sneq 3630 . . . 4 (𝑥 = 𝑢 → {𝑥} = {𝑢})
3029, 9xpeq12d 4685 . . 3 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
3126, 28, 30cbviun 3950 . 2 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
3225, 31sseqtrri 3215 1 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  csb 3081  wss 3154  {csn 3619  cop 3622   ciun 3913  cmpt 4091   × cxp 4658  dom cdm 4660  cfv 5255  cmpo 5921  1st c1st 6193  2nd c2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fv 5263  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196
This theorem is referenced by:  mpoexxg  6265  mpoxopn0yelv  6294
  Copyright terms: Public domain W3C validator