ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpossx GIF version

Theorem dmmpossx 6167
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpox.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpossx dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpossx
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2308 . . . . 5 𝑢𝐵
2 nfcsb1v 3078 . . . . 5 𝑥𝑢 / 𝑥𝐵
3 nfcv 2308 . . . . 5 𝑢𝐶
4 nfcv 2308 . . . . 5 𝑣𝐶
5 nfcsb1v 3078 . . . . 5 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
6 nfcv 2308 . . . . . 6 𝑦𝑢
7 nfcsb1v 3078 . . . . . 6 𝑦𝑣 / 𝑦𝐶
86, 7nfcsb 3082 . . . . 5 𝑦𝑢 / 𝑥𝑣 / 𝑦𝐶
9 csbeq1a 3054 . . . . 5 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
10 csbeq1a 3054 . . . . . 6 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
11 csbeq1a 3054 . . . . . 6 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
1210, 11sylan9eqr 2221 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
131, 2, 3, 4, 5, 8, 9, 12cbvmpox 5920 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
14 fmpox.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
15 vex 2729 . . . . . . . 8 𝑢 ∈ V
16 vex 2729 . . . . . . . 8 𝑣 ∈ V
1715, 16op1std 6116 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) = 𝑢)
1817csbeq1d 3052 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶)
1915, 16op2ndd 6117 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) = 𝑣)
2019csbeq1d 3052 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
2120csbeq2dv 3071 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2218, 21eqtrd 2198 . . . . 5 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2322mpomptx 5933 . . . 4 (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
2413, 14, 233eqtr4i 2196 . . 3 𝐹 = (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶)
2524dmmptss 5100 . 2 dom 𝐹 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
26 nfcv 2308 . . 3 𝑢({𝑥} × 𝐵)
27 nfcv 2308 . . . 4 𝑥{𝑢}
2827, 2nfxp 4631 . . 3 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
29 sneq 3587 . . . 4 (𝑥 = 𝑢 → {𝑥} = {𝑢})
3029, 9xpeq12d 4629 . . 3 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
3126, 28, 30cbviun 3903 . 2 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
3225, 31sseqtrri 3177 1 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  csb 3045  wss 3116  {csn 3576  cop 3579   ciun 3866  cmpt 4043   × cxp 4602  dom cdm 4604  cfv 5188  cmpo 5844  1st c1st 6106  2nd c2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fv 5196  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109
This theorem is referenced by:  mpoexxg  6178  mpoxopn0yelv  6207
  Copyright terms: Public domain W3C validator