ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmpossx GIF version

Theorem dmmpossx 6190
Description: The domain of a mapping is a subset of its base class. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
fmpox.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
dmmpossx dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem dmmpossx
Dummy variables 𝑢 𝑡 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2317 . . . . 5 𝑢𝐵
2 nfcsb1v 3088 . . . . 5 𝑥𝑢 / 𝑥𝐵
3 nfcv 2317 . . . . 5 𝑢𝐶
4 nfcv 2317 . . . . 5 𝑣𝐶
5 nfcsb1v 3088 . . . . 5 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
6 nfcv 2317 . . . . . 6 𝑦𝑢
7 nfcsb1v 3088 . . . . . 6 𝑦𝑣 / 𝑦𝐶
86, 7nfcsb 3092 . . . . 5 𝑦𝑢 / 𝑥𝑣 / 𝑦𝐶
9 csbeq1a 3064 . . . . 5 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
10 csbeq1a 3064 . . . . . 6 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
11 csbeq1a 3064 . . . . . 6 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
1210, 11sylan9eqr 2230 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → 𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
131, 2, 3, 4, 5, 8, 9, 12cbvmpox 5943 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
14 fmpox.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
15 vex 2738 . . . . . . . 8 𝑢 ∈ V
16 vex 2738 . . . . . . . 8 𝑣 ∈ V
1715, 16op1std 6139 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) = 𝑢)
1817csbeq1d 3062 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶)
1915, 16op2ndd 6140 . . . . . . . 8 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) = 𝑣)
2019csbeq1d 3062 . . . . . . 7 (𝑡 = ⟨𝑢, 𝑣⟩ → (2nd𝑡) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
2120csbeq2dv 3081 . . . . . 6 (𝑡 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2218, 21eqtrd 2208 . . . . 5 (𝑡 = ⟨𝑢, 𝑣⟩ → (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
2322mpomptx 5956 . . . 4 (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶) = (𝑢𝐴, 𝑣𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶)
2413, 14, 233eqtr4i 2206 . . 3 𝐹 = (𝑡 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵) ↦ (1st𝑡) / 𝑥(2nd𝑡) / 𝑦𝐶)
2524dmmptss 5117 . 2 dom 𝐹 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
26 nfcv 2317 . . 3 𝑢({𝑥} × 𝐵)
27 nfcv 2317 . . . 4 𝑥{𝑢}
2827, 2nfxp 4647 . . 3 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
29 sneq 3600 . . . 4 (𝑥 = 𝑢 → {𝑥} = {𝑢})
3029, 9xpeq12d 4645 . . 3 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
3126, 28, 30cbviun 3919 . 2 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
3225, 31sseqtrri 3188 1 dom 𝐹 𝑥𝐴 ({𝑥} × 𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1353  csb 3055  wss 3127  {csn 3589  cop 3592   ciun 3882  cmpt 4059   × cxp 4618  dom cdm 4620  cfv 5208  cmpo 5867  1st c1st 6129  2nd c2nd 6130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fv 5216  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132
This theorem is referenced by:  mpoexxg  6201  mpoxopn0yelv  6230
  Copyright terms: Public domain W3C validator