ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2i GIF version

Theorem csbeq2i 3131
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
csbeq2i.1 𝐵 = 𝐶
Assertion
Ref Expression
csbeq2i 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶

Proof of Theorem csbeq2i
StepHypRef Expression
1 csbeq2i.1 . . . 4 𝐵 = 𝐶
21a1i 9 . . 3 (⊤ → 𝐵 = 𝐶)
32csbeq2dv 3130 . 2 (⊤ → 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
43mptru 1384 1 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wtru 1376  csb 3104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-11 1532  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-sbc 3009  df-csb 3105
This theorem is referenced by:  csbvarg  3132  csbnest1g  3160  csbsng  3707  csbunig  3875  csbxpg  4777  csbcnvg  4883  csbdmg  4894  csbresg  4984  csbrng  5166  csbfv12g  5641  csbnegg  8312  iseqf1olemjpcl  10697  iseqf1olemqpcl  10698  iseqf1olemfvp  10699  seq3f1olemqsum  10702  csbwrdg  11067
  Copyright terms: Public domain W3C validator