ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbeq2i GIF version

Theorem csbeq2i 3107
Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.)
Hypothesis
Ref Expression
csbeq2i.1 𝐵 = 𝐶
Assertion
Ref Expression
csbeq2i 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶

Proof of Theorem csbeq2i
StepHypRef Expression
1 csbeq2i.1 . . . 4 𝐵 = 𝐶
21a1i 9 . . 3 (⊤ → 𝐵 = 𝐶)
32csbeq2dv 3106 . 2 (⊤ → 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
43mptru 1373 1 𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wtru 1365  csb 3080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-sbc 2986  df-csb 3081
This theorem is referenced by:  csbvarg  3108  csbnest1g  3136  csbsng  3679  csbunig  3843  csbxpg  4740  csbcnvg  4846  csbdmg  4856  csbresg  4945  csbrng  5127  csbfv12g  5592  csbnegg  8217  iseqf1olemjpcl  10579  iseqf1olemqpcl  10580  iseqf1olemfvp  10581  seq3f1olemqsum  10584  csbwrdg  10943
  Copyright terms: Public domain W3C validator