| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > csbeq2i | GIF version | ||
| Description: Formula-building inference for class substitution. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| csbeq2i.1 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| csbeq2i | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2i.1 | . . . 4 ⊢ 𝐵 = 𝐶 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 = 𝐶) |
| 3 | 2 | csbeq2dv 3120 | . 2 ⊢ (⊤ → ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 4 | 3 | mptru 1382 | 1 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊤wtru 1374 ⦋csb 3094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-sbc 3000 df-csb 3095 |
| This theorem is referenced by: csbvarg 3122 csbnest1g 3150 csbsng 3695 csbunig 3860 csbxpg 4760 csbcnvg 4866 csbdmg 4877 csbresg 4967 csbrng 5149 csbfv12g 5621 csbnegg 8277 iseqf1olemjpcl 10660 iseqf1olemqpcl 10661 iseqf1olemfvp 10662 seq3f1olemqsum 10665 csbwrdg 11030 |
| Copyright terms: Public domain | W3C validator |