ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss2f GIF version

Theorem dfss2f 3148
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
dfss2f (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem dfss2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3146 . 2 (𝐴𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 dfss2f.1 . . . . 5 𝑥𝐴
32nfcri 2313 . . . 4 𝑥 𝑧𝐴
4 dfss2f.2 . . . . 5 𝑥𝐵
54nfcri 2313 . . . 4 𝑥 𝑧𝐵
63, 5nfim 1572 . . 3 𝑥(𝑧𝐴𝑧𝐵)
7 nfv 1528 . . 3 𝑧(𝑥𝐴𝑥𝐵)
8 eleq1 2240 . . . 4 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
9 eleq1 2240 . . . 4 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
108, 9imbi12d 234 . . 3 (𝑧 = 𝑥 → ((𝑧𝐴𝑧𝐵) ↔ (𝑥𝐴𝑥𝐵)))
116, 7, 10cbval 1754 . 2 (∀𝑧(𝑧𝐴𝑧𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
121, 11bitri 184 1 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  wcel 2148  wnfc 2306  wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-in 3137  df-ss 3144
This theorem is referenced by:  dfss3f  3149  ssrd  3162  ssrmof  3220  ss2ab  3225
  Copyright terms: Public domain W3C validator