ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfss2f GIF version

Theorem dfss2f 3138
Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
dfss2f (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem dfss2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3136 . 2 (𝐴𝐵 ↔ ∀𝑧(𝑧𝐴𝑧𝐵))
2 dfss2f.1 . . . . 5 𝑥𝐴
32nfcri 2306 . . . 4 𝑥 𝑧𝐴
4 dfss2f.2 . . . . 5 𝑥𝐵
54nfcri 2306 . . . 4 𝑥 𝑧𝐵
63, 5nfim 1565 . . 3 𝑥(𝑧𝐴𝑧𝐵)
7 nfv 1521 . . 3 𝑧(𝑥𝐴𝑥𝐵)
8 eleq1 2233 . . . 4 (𝑧 = 𝑥 → (𝑧𝐴𝑥𝐴))
9 eleq1 2233 . . . 4 (𝑧 = 𝑥 → (𝑧𝐵𝑥𝐵))
108, 9imbi12d 233 . . 3 (𝑧 = 𝑥 → ((𝑧𝐴𝑧𝐵) ↔ (𝑥𝐴𝑥𝐵)))
116, 7, 10cbval 1747 . 2 (∀𝑧(𝑧𝐴𝑧𝐵) ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
121, 11bitri 183 1 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346  wcel 2141  wnfc 2299  wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134
This theorem is referenced by:  dfss3f  3139  ssrd  3152  ssrmof  3210  ss2ab  3215
  Copyright terms: Public domain W3C validator