ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfss GIF version

Theorem nfss 3217
Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴𝐵. (Contributed by NM, 27-Dec-1996.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
nfss 𝑥 𝐴𝐵

Proof of Theorem nfss
StepHypRef Expression
1 dfss2f.1 . . 3 𝑥𝐴
2 dfss2f.2 . . 3 𝑥𝐵
31, 2dfss3f 3216 . 2 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 nfra1 2561 . 2 𝑥𝑥𝐴 𝑥𝐵
53, 4nfxfr 1520 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wnf 1506  wcel 2200  wnfc 2359  wral 2508  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-in 3203  df-ss 3210
This theorem is referenced by:  ssrexf  3286  nfpw  3662  ssiun2s  4008  triun  4194  ssopab2b  4364  nffrfor  4438  tfis  4674  nfrel  4803  nffun  5340  nff  5469  fvmptssdm  5718  ssoprab2b  6060  nfsum1  11862  nfsum  11863  nfcprod1  12060  nfcprod  12061
  Copyright terms: Public domain W3C validator