| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfss | GIF version | ||
| Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴 ⊆ 𝐵. (Contributed by NM, 27-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfss2f.1 | ⊢ Ⅎ𝑥𝐴 |
| dfss2f.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfss | ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2f.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dfss2f.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | dfss3f 3189 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 4 | nfra1 2538 | . 2 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 | |
| 5 | 3, 4 | nfxfr 1498 | 1 ⊢ Ⅎ𝑥 𝐴 ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: Ⅎwnf 1484 ∈ wcel 2177 Ⅎwnfc 2336 ∀wral 2485 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-in 3176 df-ss 3183 |
| This theorem is referenced by: ssrexf 3259 nfpw 3633 ssiun2s 3976 triun 4162 ssopab2b 4330 nffrfor 4402 tfis 4638 nfrel 4767 nffun 5302 nff 5431 fvmptssdm 5676 ssoprab2b 6014 nfsum1 11737 nfsum 11738 nfcprod1 11935 nfcprod 11936 |
| Copyright terms: Public domain | W3C validator |