ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfss GIF version

Theorem nfss 3148
Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴𝐵. (Contributed by NM, 27-Dec-1996.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
nfss 𝑥 𝐴𝐵

Proof of Theorem nfss
StepHypRef Expression
1 dfss2f.1 . . 3 𝑥𝐴
2 dfss2f.2 . . 3 𝑥𝐵
31, 2dfss3f 3147 . 2 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 nfra1 2508 . 2 𝑥𝑥𝐴 𝑥𝐵
53, 4nfxfr 1474 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wnf 1460  wcel 2148  wnfc 2306  wral 2455  wss 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-in 3135  df-ss 3142
This theorem is referenced by:  ssrexf  3217  nfpw  3588  ssiun2s  3930  triun  4114  ssopab2b  4276  nffrfor  4348  tfis  4582  nfrel  4711  nffun  5239  nff  5362  fvmptssdm  5600  ssoprab2b  5931  nfsum1  11359  nfsum  11360  nfcprod1  11557  nfcprod  11558
  Copyright terms: Public domain W3C validator