ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfss GIF version

Theorem nfss 3173
Description: If 𝑥 is not free in 𝐴 and 𝐵, it is not free in 𝐴𝐵. (Contributed by NM, 27-Dec-1996.)
Hypotheses
Ref Expression
dfss2f.1 𝑥𝐴
dfss2f.2 𝑥𝐵
Assertion
Ref Expression
nfss 𝑥 𝐴𝐵

Proof of Theorem nfss
StepHypRef Expression
1 dfss2f.1 . . 3 𝑥𝐴
2 dfss2f.2 . . 3 𝑥𝐵
31, 2dfss3f 3172 . 2 (𝐴𝐵 ↔ ∀𝑥𝐴 𝑥𝐵)
4 nfra1 2525 . 2 𝑥𝑥𝐴 𝑥𝐵
53, 4nfxfr 1485 1 𝑥 𝐴𝐵
Colors of variables: wff set class
Syntax hints:  wnf 1471  wcel 2164  wnfc 2323  wral 2472  wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-in 3160  df-ss 3167
This theorem is referenced by:  ssrexf  3242  nfpw  3615  ssiun2s  3957  triun  4141  ssopab2b  4308  nffrfor  4380  tfis  4616  nfrel  4745  nffun  5278  nff  5401  fvmptssdm  5643  ssoprab2b  5976  nfsum1  11502  nfsum  11503  nfcprod1  11700  nfcprod  11701
  Copyright terms: Public domain W3C validator