ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieq GIF version

Theorem unieq 3896
Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
unieq (𝐴 = 𝐵 𝐴 = 𝐵)

Proof of Theorem unieq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2729 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥𝐵 𝑦𝑥))
21abbidv 2347 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥})
3 dfuni2 3889 . 2 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥}
4 dfuni2 3889 . 2 𝐵 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥}
52, 3, 43eqtr4g 2287 1 (𝐴 = 𝐵 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  {cab 2215  wrex 2509   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-uni 3888
This theorem is referenced by:  unieqi  3897  unieqd  3898  uniintsnr  3958  iununir  4048  treq  4187  limeq  4467  uniex  4527  uniexg  4529  ordsucunielexmid  4622  onsucuni2  4655  nnpredcl  4714  elvvuni  4782  unielrel  5255  unixp0im  5264  iotass  5295  nnsucuniel  6639  en1bg  6950  omp1eom  7258  ctmlemr  7271  nnnninfeq2  7292  uniopn  14669  istopon  14681  eltg3  14725  tgdom  14740  cldval  14767  ntrfval  14768  clsfval  14769  neifval  14808  tgrest  14837  cnprcl2k  14874  bj-uniex  16238  bj-uniexg  16239  nnsf  16330  peano3nninf  16332  exmidsbthr  16350
  Copyright terms: Public domain W3C validator