| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieq | GIF version | ||
| Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| unieq | ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2706 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) | |
| 2 | 1 | abbidv 2325 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥}) |
| 3 | dfuni2 3866 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 4 | dfuni2 3866 | . 2 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
| 5 | 2, 3, 4 | 3eqtr4g 2265 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 {cab 2193 ∃wrex 2487 ∪ cuni 3864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-uni 3865 |
| This theorem is referenced by: unieqi 3874 unieqd 3875 uniintsnr 3935 iununir 4025 treq 4164 limeq 4442 uniex 4502 uniexg 4504 ordsucunielexmid 4597 onsucuni2 4630 nnpredcl 4689 elvvuni 4757 unielrel 5229 unixp0im 5238 iotass 5268 nnsucuniel 6604 en1bg 6915 omp1eom 7223 ctmlemr 7236 nnnninfeq2 7257 uniopn 14588 istopon 14600 eltg3 14644 tgdom 14659 cldval 14686 ntrfval 14687 clsfval 14688 neifval 14727 tgrest 14756 cnprcl2k 14793 bj-uniex 16052 bj-uniexg 16053 nnsf 16144 peano3nninf 16146 exmidsbthr 16164 |
| Copyright terms: Public domain | W3C validator |