![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieq | GIF version |
Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
unieq | ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 2691 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) | |
2 | 1 | abbidv 2311 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥}) |
3 | dfuni2 3838 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
4 | dfuni2 3838 | . 2 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
5 | 2, 3, 4 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 {cab 2179 ∃wrex 2473 ∪ cuni 3836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3837 |
This theorem is referenced by: unieqi 3846 unieqd 3847 uniintsnr 3907 iununir 3997 treq 4134 limeq 4409 uniex 4469 uniexg 4471 ordsucunielexmid 4564 onsucuni2 4597 nnpredcl 4656 elvvuni 4724 unielrel 5194 unixp0im 5203 iotass 5233 nnsucuniel 6550 en1bg 6856 omp1eom 7156 ctmlemr 7169 nnnninfeq2 7190 uniopn 14180 istopon 14192 eltg3 14236 tgdom 14251 cldval 14278 ntrfval 14279 clsfval 14280 neifval 14319 tgrest 14348 cnprcl2k 14385 bj-uniex 15479 bj-uniexg 15480 nnsf 15565 peano3nninf 15567 exmidsbthr 15583 |
Copyright terms: Public domain | W3C validator |