ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieq GIF version

Theorem unieq 3818
Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
unieq (𝐴 = 𝐵 𝐴 = 𝐵)

Proof of Theorem unieq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2673 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥𝐵 𝑦𝑥))
21abbidv 2295 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥})
3 dfuni2 3811 . 2 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥}
4 dfuni2 3811 . 2 𝐵 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥}
52, 3, 43eqtr4g 2235 1 (𝐴 = 𝐵 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  {cab 2163  wrex 2456   cuni 3809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-uni 3810
This theorem is referenced by:  unieqi  3819  unieqd  3820  uniintsnr  3880  iununir  3970  treq  4107  limeq  4377  uniex  4437  uniexg  4439  ordsucunielexmid  4530  onsucuni2  4563  nnpredcl  4622  elvvuni  4690  unielrel  5156  unixp0im  5165  iotass  5195  nnsucuniel  6495  en1bg  6799  omp1eom  7093  ctmlemr  7106  nnnninfeq2  7126  uniopn  13471  istopon  13483  eltg3  13527  tgdom  13542  cldval  13569  ntrfval  13570  clsfval  13571  neifval  13610  tgrest  13639  cnprcl2k  13676  bj-uniex  14639  bj-uniexg  14640  nnsf  14724  peano3nninf  14726  exmidsbthr  14741
  Copyright terms: Public domain W3C validator