| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieq | GIF version | ||
| Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| unieq | ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2694 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) | |
| 2 | 1 | abbidv 2314 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥}) |
| 3 | dfuni2 3842 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 4 | dfuni2 3842 | . 2 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 {cab 2182 ∃wrex 2476 ∪ cuni 3840 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-uni 3841 |
| This theorem is referenced by: unieqi 3850 unieqd 3851 uniintsnr 3911 iununir 4001 treq 4138 limeq 4413 uniex 4473 uniexg 4475 ordsucunielexmid 4568 onsucuni2 4601 nnpredcl 4660 elvvuni 4728 unielrel 5198 unixp0im 5207 iotass 5237 nnsucuniel 6562 en1bg 6868 omp1eom 7170 ctmlemr 7183 nnnninfeq2 7204 uniopn 14345 istopon 14357 eltg3 14401 tgdom 14416 cldval 14443 ntrfval 14444 clsfval 14445 neifval 14484 tgrest 14513 cnprcl2k 14550 bj-uniex 15671 bj-uniexg 15672 nnsf 15760 peano3nninf 15762 exmidsbthr 15780 |
| Copyright terms: Public domain | W3C validator |