ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieq GIF version

Theorem unieq 3805
Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
unieq (𝐴 = 𝐵 𝐴 = 𝐵)

Proof of Theorem unieq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2666 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥𝐵 𝑦𝑥))
21abbidv 2288 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥})
3 dfuni2 3798 . 2 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥}
4 dfuni2 3798 . 2 𝐵 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥}
52, 3, 43eqtr4g 2228 1 (𝐴 = 𝐵 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  {cab 2156  wrex 2449   cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-uni 3797
This theorem is referenced by:  unieqi  3806  unieqd  3807  uniintsnr  3867  iununir  3956  treq  4093  limeq  4362  uniex  4422  uniexg  4424  ordsucunielexmid  4515  onsucuni2  4548  nnpredcl  4607  elvvuni  4675  unielrel  5138  unixp0im  5147  iotass  5177  nnsucuniel  6474  en1bg  6778  omp1eom  7072  ctmlemr  7085  nnnninfeq2  7105  uniopn  12793  istopon  12805  eltg3  12851  tgdom  12866  cldval  12893  ntrfval  12894  clsfval  12895  neifval  12934  tgrest  12963  cnprcl2k  13000  bj-uniex  13952  bj-uniexg  13953  nnsf  14038  peano3nninf  14040  exmidsbthr  14055
  Copyright terms: Public domain W3C validator