| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieq | GIF version | ||
| Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| unieq | ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2703 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) | |
| 2 | 1 | abbidv 2323 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥}) |
| 3 | dfuni2 3852 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 4 | dfuni2 3852 | . 2 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
| 5 | 2, 3, 4 | 3eqtr4g 2263 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 {cab 2191 ∃wrex 2485 ∪ cuni 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-uni 3851 |
| This theorem is referenced by: unieqi 3860 unieqd 3861 uniintsnr 3921 iununir 4011 treq 4148 limeq 4424 uniex 4484 uniexg 4486 ordsucunielexmid 4579 onsucuni2 4612 nnpredcl 4671 elvvuni 4739 unielrel 5210 unixp0im 5219 iotass 5249 nnsucuniel 6581 en1bg 6892 omp1eom 7197 ctmlemr 7210 nnnninfeq2 7231 uniopn 14473 istopon 14485 eltg3 14529 tgdom 14544 cldval 14571 ntrfval 14572 clsfval 14573 neifval 14612 tgrest 14641 cnprcl2k 14678 bj-uniex 15853 bj-uniexg 15854 nnsf 15942 peano3nninf 15944 exmidsbthr 15962 |
| Copyright terms: Public domain | W3C validator |