| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unieq | GIF version | ||
| Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| unieq | ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq 2702 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) | |
| 2 | 1 | abbidv 2322 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥}) |
| 3 | dfuni2 3851 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 4 | dfuni2 3851 | . 2 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
| 5 | 2, 3, 4 | 3eqtr4g 2262 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 {cab 2190 ∃wrex 2484 ∪ cuni 3849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-uni 3850 |
| This theorem is referenced by: unieqi 3859 unieqd 3860 uniintsnr 3920 iununir 4010 treq 4147 limeq 4423 uniex 4483 uniexg 4485 ordsucunielexmid 4578 onsucuni2 4611 nnpredcl 4670 elvvuni 4738 unielrel 5209 unixp0im 5218 iotass 5248 nnsucuniel 6580 en1bg 6891 omp1eom 7196 ctmlemr 7209 nnnninfeq2 7230 uniopn 14444 istopon 14456 eltg3 14500 tgdom 14515 cldval 14542 ntrfval 14543 clsfval 14544 neifval 14583 tgrest 14612 cnprcl2k 14649 bj-uniex 15815 bj-uniexg 15816 nnsf 15904 peano3nninf 15906 exmidsbthr 15924 |
| Copyright terms: Public domain | W3C validator |