![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieq | GIF version |
Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
unieq | ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexeq 2691 | . . 3 ⊢ (𝐴 = 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥)) | |
2 | 1 | abbidv 2311 | . 2 ⊢ (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥}) |
3 | dfuni2 3837 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
4 | dfuni2 3837 | . 2 ⊢ ∪ 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝑥} | |
5 | 2, 3, 4 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 {cab 2179 ∃wrex 2473 ∪ cuni 3835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-uni 3836 |
This theorem is referenced by: unieqi 3845 unieqd 3846 uniintsnr 3906 iununir 3996 treq 4133 limeq 4408 uniex 4468 uniexg 4470 ordsucunielexmid 4563 onsucuni2 4596 nnpredcl 4655 elvvuni 4723 unielrel 5193 unixp0im 5202 iotass 5232 nnsucuniel 6548 en1bg 6854 omp1eom 7154 ctmlemr 7167 nnnninfeq2 7188 uniopn 14169 istopon 14181 eltg3 14225 tgdom 14240 cldval 14267 ntrfval 14268 clsfval 14269 neifval 14308 tgrest 14337 cnprcl2k 14374 bj-uniex 15409 bj-uniexg 15410 nnsf 15495 peano3nninf 15497 exmidsbthr 15513 |
Copyright terms: Public domain | W3C validator |