ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unieq GIF version

Theorem unieq 3845
Description: Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
unieq (𝐴 = 𝐵 𝐴 = 𝐵)

Proof of Theorem unieq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexeq 2691 . . 3 (𝐴 = 𝐵 → (∃𝑥𝐴 𝑦𝑥 ↔ ∃𝑥𝐵 𝑦𝑥))
21abbidv 2311 . 2 (𝐴 = 𝐵 → {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥} = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥})
3 dfuni2 3838 . 2 𝐴 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝑥}
4 dfuni2 3838 . 2 𝐵 = {𝑦 ∣ ∃𝑥𝐵 𝑦𝑥}
52, 3, 43eqtr4g 2251 1 (𝐴 = 𝐵 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  {cab 2179  wrex 2473   cuni 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-uni 3837
This theorem is referenced by:  unieqi  3846  unieqd  3847  uniintsnr  3907  iununir  3997  treq  4134  limeq  4409  uniex  4469  uniexg  4471  ordsucunielexmid  4564  onsucuni2  4597  nnpredcl  4656  elvvuni  4724  unielrel  5194  unixp0im  5203  iotass  5233  nnsucuniel  6550  en1bg  6856  omp1eom  7156  ctmlemr  7169  nnnninfeq2  7190  uniopn  14180  istopon  14192  eltg3  14236  tgdom  14251  cldval  14278  ntrfval  14279  clsfval  14280  neifval  14319  tgrest  14348  cnprcl2k  14385  bj-uniex  15479  bj-uniexg  15480  nnsf  15565  peano3nninf  15567  exmidsbthr  15583
  Copyright terms: Public domain W3C validator