ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfuni GIF version

Theorem nfuni 3689
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
nfuni.1 𝑥𝐴
Assertion
Ref Expression
nfuni 𝑥 𝐴

Proof of Theorem nfuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3685 . 2 𝐴 = {𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
2 nfuni.1 . . . 4 𝑥𝐴
3 nfv 1476 . . . 4 𝑥 𝑦𝑧
42, 3nfrexxy 2431 . . 3 𝑥𝑧𝐴 𝑦𝑧
54nfab 2245 . 2 𝑥{𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
61, 5nfcxfr 2237 1 𝑥 𝐴
Colors of variables: wff set class
Syntax hints:  {cab 2086  wnfc 2227  wrex 2376   cuni 3683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-uni 3684
This theorem is referenced by:  nfiota1  5026  nfrecs  6134  nfsup  6794
  Copyright terms: Public domain W3C validator