| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfuni | GIF version | ||
| Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfuni.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfuni | ⊢ Ⅎ𝑥∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfuni2 3889 | . 2 ⊢ ∪ 𝐴 = {𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
| 2 | nfuni.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
| 4 | 2, 3 | nfrexw 2569 | . . 3 ⊢ Ⅎ𝑥∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
| 5 | 4 | nfab 2377 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
| 6 | 1, 5 | nfcxfr 2369 | 1 ⊢ Ⅎ𝑥∪ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: {cab 2215 Ⅎwnfc 2359 ∃wrex 2509 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-uni 3888 |
| This theorem is referenced by: nfiota1 5279 iotaexab 5296 nfrecs 6451 nfsup 7155 |
| Copyright terms: Public domain | W3C validator |