ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfuni GIF version

Theorem nfuni 3862
Description: Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
nfuni.1 𝑥𝐴
Assertion
Ref Expression
nfuni 𝑥 𝐴

Proof of Theorem nfuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3858 . 2 𝐴 = {𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
2 nfuni.1 . . . 4 𝑥𝐴
3 nfv 1552 . . . 4 𝑥 𝑦𝑧
42, 3nfrexw 2546 . . 3 𝑥𝑧𝐴 𝑦𝑧
54nfab 2354 . 2 𝑥{𝑦 ∣ ∃𝑧𝐴 𝑦𝑧}
61, 5nfcxfr 2346 1 𝑥 𝐴
Colors of variables: wff set class
Syntax hints:  {cab 2192  wnfc 2336  wrex 2486   cuni 3856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-uni 3857
This theorem is referenced by:  nfiota1  5243  iotaexab  5259  nfrecs  6406  nfsup  7109
  Copyright terms: Public domain W3C validator