Proof of Theorem difrab
Step | Hyp | Ref
| Expression |
1 | | df-rab 2453 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
2 | | df-rab 2453 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} |
3 | 1, 2 | difeq12i 3238 |
. 2
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∖ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
4 | | df-rab 2453 |
. . 3
⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ ¬ 𝜓))} |
5 | | difab 3391 |
. . . 4
⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∖ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
6 | | anass 399 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ ¬ 𝜓))) |
7 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜓) |
8 | 7 | con3i 622 |
. . . . . . . 8
⊢ (¬
𝜓 → ¬ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
9 | 8 | anim2i 340 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ 𝜓) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
10 | | pm3.2 138 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → (𝜓 → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
11 | 10 | adantr 274 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝜓 → (𝑥 ∈ 𝐴 ∧ 𝜓))) |
12 | 11 | con3d 621 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → (¬ (𝑥 ∈ 𝐴 ∧ 𝜓) → ¬ 𝜓)) |
13 | 12 | imdistani 442 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝜓)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ 𝜓)) |
14 | 9, 13 | impbii 125 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ 𝜓) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
15 | 6, 14 | bitr3i 185 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ (𝜑 ∧ ¬ 𝜓)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝜓))) |
16 | 15 | abbii 2282 |
. . . 4
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ ¬ 𝜓))} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝜓))} |
17 | 5, 16 | eqtr4i 2189 |
. . 3
⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∖ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ (𝜑 ∧ ¬ 𝜓))} |
18 | 4, 17 | eqtr4i 2189 |
. 2
⊢ {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∖ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)}) |
19 | 3, 18 | eqtr4i 2189 |
1
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} |