ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrab GIF version

Theorem difrab 3355
Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
difrab ({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)}

Proof of Theorem difrab
StepHypRef Expression
1 df-rab 2426 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 2426 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2difeq12i 3197 . 2 ({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)})
4 df-rab 2426 . . 3 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓))}
5 difab 3350 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓))}
6 anass 399 . . . . . 6 (((𝑥𝐴𝜑) ∧ ¬ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓)))
7 simpr 109 . . . . . . . . 9 ((𝑥𝐴𝜓) → 𝜓)
87con3i 622 . . . . . . . 8 𝜓 → ¬ (𝑥𝐴𝜓))
98anim2i 340 . . . . . . 7 (((𝑥𝐴𝜑) ∧ ¬ 𝜓) → ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)))
10 pm3.2 138 . . . . . . . . . 10 (𝑥𝐴 → (𝜓 → (𝑥𝐴𝜓)))
1110adantr 274 . . . . . . . . 9 ((𝑥𝐴𝜑) → (𝜓 → (𝑥𝐴𝜓)))
1211con3d 621 . . . . . . . 8 ((𝑥𝐴𝜑) → (¬ (𝑥𝐴𝜓) → ¬ 𝜓))
1312imdistani 442 . . . . . . 7 (((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)) → ((𝑥𝐴𝜑) ∧ ¬ 𝜓))
149, 13impbii 125 . . . . . 6 (((𝑥𝐴𝜑) ∧ ¬ 𝜓) ↔ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)))
156, 14bitr3i 185 . . . . 5 ((𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓)) ↔ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)))
1615abbii 2256 . . . 4 {𝑥 ∣ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓))} = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓))}
175, 16eqtr4i 2164 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓))}
184, 17eqtr4i 2164 . 2 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)})
193, 18eqtr4i 2164 1 ({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1332  wcel 1481  {cab 2126  {crab 2421  cdif 3073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rab 2426  df-v 2691  df-dif 3078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator