ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difrab GIF version

Theorem difrab 3451
Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.)
Assertion
Ref Expression
difrab ({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)}

Proof of Theorem difrab
StepHypRef Expression
1 df-rab 2494 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 df-rab 2494 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
31, 2difeq12i 3293 . 2 ({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)})
4 df-rab 2494 . . 3 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓))}
5 difab 3446 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓))}
6 anass 401 . . . . . 6 (((𝑥𝐴𝜑) ∧ ¬ 𝜓) ↔ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓)))
7 simpr 110 . . . . . . . . 9 ((𝑥𝐴𝜓) → 𝜓)
87con3i 633 . . . . . . . 8 𝜓 → ¬ (𝑥𝐴𝜓))
98anim2i 342 . . . . . . 7 (((𝑥𝐴𝜑) ∧ ¬ 𝜓) → ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)))
10 pm3.2 139 . . . . . . . . . 10 (𝑥𝐴 → (𝜓 → (𝑥𝐴𝜓)))
1110adantr 276 . . . . . . . . 9 ((𝑥𝐴𝜑) → (𝜓 → (𝑥𝐴𝜓)))
1211con3d 632 . . . . . . . 8 ((𝑥𝐴𝜑) → (¬ (𝑥𝐴𝜓) → ¬ 𝜓))
1312imdistani 445 . . . . . . 7 (((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)) → ((𝑥𝐴𝜑) ∧ ¬ 𝜓))
149, 13impbii 126 . . . . . 6 (((𝑥𝐴𝜑) ∧ ¬ 𝜓) ↔ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)))
156, 14bitr3i 186 . . . . 5 ((𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓)) ↔ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓)))
1615abbii 2322 . . . 4 {𝑥 ∣ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓))} = {𝑥 ∣ ((𝑥𝐴𝜑) ∧ ¬ (𝑥𝐴𝜓))}
175, 16eqtr4i 2230 . . 3 ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)}) = {𝑥 ∣ (𝑥𝐴 ∧ (𝜑 ∧ ¬ 𝜓))}
184, 17eqtr4i 2230 . 2 {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∖ {𝑥 ∣ (𝑥𝐴𝜓)})
193, 18eqtr4i 2230 1 ({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1373  wcel 2177  {cab 2192  {crab 2489  cdif 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-dif 3172
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator