Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2i GIF version

Theorem difeq2i 3222
 Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
difeq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem difeq2i
StepHypRef Expression
1 difeq1i.1 . 2 𝐴 = 𝐵
2 difeq2 3219 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
 Colors of variables: wff set class Syntax hints:   = wceq 1335   ∖ cdif 3099 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-11 1486  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-ral 2440  df-rab 2444  df-dif 3104 This theorem is referenced by:  difeq12i  3223  inssddif  3348  difdif2ss  3364  dif32  3370  difabs  3371  symdif1  3372  notrab  3384  dif0  3464  difdifdirss  3478  dfif3  3518  difpr  3698  dif1o  6379  unfiin  6863
 Copyright terms: Public domain W3C validator