ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2i GIF version

Theorem difeq2i 3292
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
difeq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem difeq2i
StepHypRef Expression
1 difeq1i.1 . 2 𝐴 = 𝐵
2 difeq2 3289 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cdif 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ral 2490  df-rab 2494  df-dif 3172
This theorem is referenced by:  difeq12i  3293  inssddif  3418  difdif2ss  3434  dif32  3440  difabs  3441  symdif1  3442  notrab  3454  dif0  3535  difdifdirss  3549  dfif3  3589  difpr  3781  dif1o  6537  unfiin  7038  m1bits  12346
  Copyright terms: Public domain W3C validator