Proof of Theorem bj-charfun
Step | Hyp | Ref
| Expression |
1 | | bj-charfun.1 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
2 | | fmelpw1o 13841 |
. . . 4
⊢ if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
1o |
3 | 2 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
1o) |
4 | 1, 3 | fmpt3d 5652 |
. 2
⊢ (𝜑 → 𝐹:𝑋⟶𝒫
1o) |
5 | | inss1 3347 |
. . . . 5
⊢ (𝑋 ∩ 𝐴) ⊆ 𝑋 |
6 | 5 | a1i 9 |
. . . 4
⊢ (𝜑 → (𝑋 ∩ 𝐴) ⊆ 𝑋) |
7 | | difssd 3254 |
. . . 4
⊢ (𝜑 → (𝑋 ∖ 𝐴) ⊆ 𝑋) |
8 | 6, 7 | unssd 3303 |
. . 3
⊢ (𝜑 → ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴)) ⊆ 𝑋) |
9 | | elun 3268 |
. . . . 5
⊢ (𝑥 ∈ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴)) ↔ (𝑥 ∈ (𝑋 ∩ 𝐴) ∨ 𝑥 ∈ (𝑋 ∖ 𝐴))) |
10 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) |
11 | 10 | elin1d 3316 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝑋) |
12 | 1 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
13 | | 1oex 6403 |
. . . . . . . . . . . . 13
⊢
1o ∈ V |
14 | | 0ex 4116 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
15 | 13, 14 | ifelpwun 4468 |
. . . . . . . . . . . 12
⊢ if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
(1o ∪ ∅) |
16 | 15 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
(1o ∪ ∅)) |
17 | 12, 16 | fvmpt2d 5582 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
18 | 11, 17 | mpdan 419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
19 | 10 | elin2d 3317 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
20 | 19 | iftrued 3533 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) =
1o) |
21 | 18, 20 | eqtrd 2203 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = 1o) |
22 | | 1lt2o 6421 |
. . . . . . . 8
⊢
1o ∈ 2o |
23 | 21, 22 | eqeltrdi 2261 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) ∈ 2o) |
24 | 23 | ex 114 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋 ∩ 𝐴) → (𝐹‘𝑥) ∈ 2o)) |
25 | | simpr 109 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝑥 ∈ (𝑋 ∖ 𝐴)) |
26 | 25 | eldifad 3132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝑥 ∈ 𝑋) |
27 | 1 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
28 | 15 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
(1o ∪ ∅)) |
29 | 27, 28 | fvmpt2d 5582 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
30 | 26, 29 | mpdan 419 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
31 | 25 | eldifbd 3133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
32 | 31 | iffalsed 3536 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) =
∅) |
33 | 30, 32 | eqtrd 2203 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = ∅) |
34 | | 0lt2o 6420 |
. . . . . . . 8
⊢ ∅
∈ 2o |
35 | 33, 34 | eqeltrdi 2261 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) ∈ 2o) |
36 | 35 | ex 114 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ 𝐴) → (𝐹‘𝑥) ∈ 2o)) |
37 | 24, 36 | jaod 712 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝑋 ∩ 𝐴) ∨ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) ∈ 2o)) |
38 | 9, 37 | syl5bi 151 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) ∈ 2o)) |
39 | 38 | imp 123 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))) → (𝐹‘𝑥) ∈ 2o) |
40 | 4, 8, 39 | resflem 5660 |
. 2
⊢ (𝜑 → (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o) |
41 | 21 | ralrimiva 2543 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o) |
42 | 33 | ralrimiva 2543 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅) |
43 | 41, 42 | jca 304 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅)) |
44 | 4, 40, 43 | jca31 307 |
1
⊢ (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o) ∧
(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |