Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfun GIF version

Theorem bj-charfun 14215
Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴. (Contributed by BJ, 15-Aug-2024.)
Hypothesis
Ref Expression
bj-charfun.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
Assertion
Ref Expression
bj-charfun (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝐹

Proof of Theorem bj-charfun
StepHypRef Expression
1 bj-charfun.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
2 fmelpw1o 14214 . . . 4 if(𝑥𝐴, 1o, ∅) ∈ 𝒫 1o
32a1i 9 . . 3 ((𝜑𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 𝒫 1o)
41, 3fmpt3d 5668 . 2 (𝜑𝐹:𝑋⟶𝒫 1o)
5 inss1 3355 . . . . 5 (𝑋𝐴) ⊆ 𝑋
65a1i 9 . . . 4 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
7 difssd 3262 . . . 4 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
86, 7unssd 3311 . . 3 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) ⊆ 𝑋)
9 elun 3276 . . . . 5 (𝑥 ∈ ((𝑋𝐴) ∪ (𝑋𝐴)) ↔ (𝑥 ∈ (𝑋𝐴) ∨ 𝑥 ∈ (𝑋𝐴)))
10 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
1110elin1d 3324 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝑋)
121adantr 276 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
13 1oex 6419 . . . . . . . . . . . . 13 1o ∈ V
14 0ex 4127 . . . . . . . . . . . . 13 ∅ ∈ V
1513, 14ifelpwun 4480 . . . . . . . . . . . 12 if(𝑥𝐴, 1o, ∅) ∈ 𝒫 (1o ∪ ∅)
1615a1i 9 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑋𝐴)) ∧ 𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 𝒫 (1o ∪ ∅))
1712, 16fvmpt2d 5598 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑋𝐴)) ∧ 𝑥𝑋) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
1811, 17mpdan 421 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
1910elin2d 3325 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝐴)
2019iftrued 3541 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = 1o)
2118, 20eqtrd 2210 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = 1o)
22 1lt2o 6437 . . . . . . . 8 1o ∈ 2o
2321, 22eqeltrdi 2268 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) ∈ 2o)
2423ex 115 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → (𝐹𝑥) ∈ 2o))
25 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
2625eldifad 3140 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝑋)
271adantr 276 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
2815a1i 9 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑋𝐴)) ∧ 𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 𝒫 (1o ∪ ∅))
2927, 28fvmpt2d 5598 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑋𝐴)) ∧ 𝑥𝑋) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
3026, 29mpdan 421 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
3125eldifbd 3141 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋𝐴)) → ¬ 𝑥𝐴)
3231iffalsed 3544 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = ∅)
3330, 32eqtrd 2210 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = ∅)
34 0lt2o 6436 . . . . . . . 8 ∅ ∈ 2o
3533, 34eqeltrdi 2268 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) ∈ 2o)
3635ex 115 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → (𝐹𝑥) ∈ 2o))
3724, 36jaod 717 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑋𝐴) ∨ 𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) ∈ 2o))
389, 37biimtrid 152 . . . 4 (𝜑 → (𝑥 ∈ ((𝑋𝐴) ∪ (𝑋𝐴)) → (𝐹𝑥) ∈ 2o))
3938imp 124 . . 3 ((𝜑𝑥 ∈ ((𝑋𝐴) ∪ (𝑋𝐴))) → (𝐹𝑥) ∈ 2o)
404, 8, 39resflem 5676 . 2 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o)
4121ralrimiva 2550 . . 3 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o)
4233ralrimiva 2550 . . 3 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)
4341, 42jca 306 . 2 (𝜑 → (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅))
444, 40, 43jca31 309 1 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708   = wceq 1353  wcel 2148  wral 2455  cdif 3126  cun 3127  cin 3128  wss 3129  c0 3422  ifcif 3534  𝒫 cpw 3574  cmpt 4061  cres 4625  wf 5208  cfv 5212  1oc1o 6404  2oc2o 6405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-1o 6411  df-2o 6412
This theorem is referenced by:  bj-charfundcALT  14217
  Copyright terms: Public domain W3C validator