Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfun GIF version

Theorem bj-charfun 15453
Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴. (Contributed by BJ, 15-Aug-2024.)
Hypothesis
Ref Expression
bj-charfun.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
Assertion
Ref Expression
bj-charfun (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋   𝑥,𝐴   𝑥,𝐹

Proof of Theorem bj-charfun
StepHypRef Expression
1 bj-charfun.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
2 fmelpw1o 15452 . . . 4 if(𝑥𝐴, 1o, ∅) ∈ 𝒫 1o
32a1i 9 . . 3 ((𝜑𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 𝒫 1o)
41, 3fmpt3d 5718 . 2 (𝜑𝐹:𝑋⟶𝒫 1o)
5 inss1 3383 . . . . 5 (𝑋𝐴) ⊆ 𝑋
65a1i 9 . . . 4 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
7 difssd 3290 . . . 4 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
86, 7unssd 3339 . . 3 (𝜑 → ((𝑋𝐴) ∪ (𝑋𝐴)) ⊆ 𝑋)
9 elun 3304 . . . . 5 (𝑥 ∈ ((𝑋𝐴) ∪ (𝑋𝐴)) ↔ (𝑥 ∈ (𝑋𝐴) ∨ 𝑥 ∈ (𝑋𝐴)))
10 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
1110elin1d 3352 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝑋)
121adantr 276 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
13 1oex 6482 . . . . . . . . . . . . 13 1o ∈ V
14 0ex 4160 . . . . . . . . . . . . 13 ∅ ∈ V
1513, 14ifelpwun 4518 . . . . . . . . . . . 12 if(𝑥𝐴, 1o, ∅) ∈ 𝒫 (1o ∪ ∅)
1615a1i 9 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑋𝐴)) ∧ 𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 𝒫 (1o ∪ ∅))
1712, 16fvmpt2d 5648 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑋𝐴)) ∧ 𝑥𝑋) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
1811, 17mpdan 421 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
1910elin2d 3353 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝐴)
2019iftrued 3568 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = 1o)
2118, 20eqtrd 2229 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = 1o)
22 1lt2o 6500 . . . . . . . 8 1o ∈ 2o
2321, 22eqeltrdi 2287 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) ∈ 2o)
2423ex 115 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → (𝐹𝑥) ∈ 2o))
25 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
2625eldifad 3168 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝑋)
271adantr 276 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
2815a1i 9 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝑋𝐴)) ∧ 𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 𝒫 (1o ∪ ∅))
2927, 28fvmpt2d 5648 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝑋𝐴)) ∧ 𝑥𝑋) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
3026, 29mpdan 421 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
3125eldifbd 3169 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋𝐴)) → ¬ 𝑥𝐴)
3231iffalsed 3571 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = ∅)
3330, 32eqtrd 2229 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = ∅)
34 0lt2o 6499 . . . . . . . 8 ∅ ∈ 2o
3533, 34eqeltrdi 2287 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) ∈ 2o)
3635ex 115 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → (𝐹𝑥) ∈ 2o))
3724, 36jaod 718 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑋𝐴) ∨ 𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) ∈ 2o))
389, 37biimtrid 152 . . . 4 (𝜑 → (𝑥 ∈ ((𝑋𝐴) ∪ (𝑋𝐴)) → (𝐹𝑥) ∈ 2o))
3938imp 124 . . 3 ((𝜑𝑥 ∈ ((𝑋𝐴) ∪ (𝑋𝐴))) → (𝐹𝑥) ∈ 2o)
404, 8, 39resflem 5726 . 2 (𝜑 → (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o)
4121ralrimiva 2570 . . 3 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o)
4233ralrimiva 2570 . . 3 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)
4341, 42jca 306 . 2 (𝜑 → (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅))
444, 40, 43jca31 309 1 (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋𝐴) ∪ (𝑋𝐴))):((𝑋𝐴) ∪ (𝑋𝐴))⟶2o) ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  wral 2475  cdif 3154  cun 3155  cin 3156  wss 3157  c0 3450  ifcif 3561  𝒫 cpw 3605  cmpt 4094  cres 4665  wf 5254  cfv 5258  1oc1o 6467  2oc2o 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-1o 6474  df-2o 6475
This theorem is referenced by:  bj-charfundcALT  15455
  Copyright terms: Public domain W3C validator