Proof of Theorem bj-charfun
| Step | Hyp | Ref
| Expression |
| 1 | | bj-charfun.1 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
| 2 | | fmelpw1o 15452 |
. . . 4
⊢ if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
1o |
| 3 | 2 | a1i 9 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
1o) |
| 4 | 1, 3 | fmpt3d 5718 |
. 2
⊢ (𝜑 → 𝐹:𝑋⟶𝒫
1o) |
| 5 | | inss1 3383 |
. . . . 5
⊢ (𝑋 ∩ 𝐴) ⊆ 𝑋 |
| 6 | 5 | a1i 9 |
. . . 4
⊢ (𝜑 → (𝑋 ∩ 𝐴) ⊆ 𝑋) |
| 7 | | difssd 3290 |
. . . 4
⊢ (𝜑 → (𝑋 ∖ 𝐴) ⊆ 𝑋) |
| 8 | 6, 7 | unssd 3339 |
. . 3
⊢ (𝜑 → ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴)) ⊆ 𝑋) |
| 9 | | elun 3304 |
. . . . 5
⊢ (𝑥 ∈ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴)) ↔ (𝑥 ∈ (𝑋 ∩ 𝐴) ∨ 𝑥 ∈ (𝑋 ∖ 𝐴))) |
| 10 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) |
| 11 | 10 | elin1d 3352 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝑋) |
| 12 | 1 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
| 13 | | 1oex 6482 |
. . . . . . . . . . . . 13
⊢
1o ∈ V |
| 14 | | 0ex 4160 |
. . . . . . . . . . . . 13
⊢ ∅
∈ V |
| 15 | 13, 14 | ifelpwun 4518 |
. . . . . . . . . . . 12
⊢ if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
(1o ∪ ∅) |
| 16 | 15 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
(1o ∪ ∅)) |
| 17 | 12, 16 | fvmpt2d 5648 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 18 | 11, 17 | mpdan 421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 19 | 10 | elin2d 3353 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
| 20 | 19 | iftrued 3568 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) =
1o) |
| 21 | 18, 20 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = 1o) |
| 22 | | 1lt2o 6500 |
. . . . . . . 8
⊢
1o ∈ 2o |
| 23 | 21, 22 | eqeltrdi 2287 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) ∈ 2o) |
| 24 | 23 | ex 115 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋 ∩ 𝐴) → (𝐹‘𝑥) ∈ 2o)) |
| 25 | | simpr 110 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝑥 ∈ (𝑋 ∖ 𝐴)) |
| 26 | 25 | eldifad 3168 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝑥 ∈ 𝑋) |
| 27 | 1 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
| 28 | 15 | a1i 9 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 𝒫
(1o ∪ ∅)) |
| 29 | 27, 28 | fvmpt2d 5648 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 30 | 26, 29 | mpdan 421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 31 | 25 | eldifbd 3169 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
| 32 | 31 | iffalsed 3571 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) =
∅) |
| 33 | 30, 32 | eqtrd 2229 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = ∅) |
| 34 | | 0lt2o 6499 |
. . . . . . . 8
⊢ ∅
∈ 2o |
| 35 | 33, 34 | eqeltrdi 2287 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) ∈ 2o) |
| 36 | 35 | ex 115 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ 𝐴) → (𝐹‘𝑥) ∈ 2o)) |
| 37 | 24, 36 | jaod 718 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝑋 ∩ 𝐴) ∨ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) ∈ 2o)) |
| 38 | 9, 37 | biimtrid 152 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) ∈ 2o)) |
| 39 | 38 | imp 124 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))) → (𝐹‘𝑥) ∈ 2o) |
| 40 | 4, 8, 39 | resflem 5726 |
. 2
⊢ (𝜑 → (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o) |
| 41 | 21 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o) |
| 42 | 33 | ralrimiva 2570 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅) |
| 43 | 41, 42 | jca 306 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅)) |
| 44 | 4, 40, 43 | jca31 309 |
1
⊢ (𝜑 → ((𝐹:𝑋⟶𝒫 1o ∧ (𝐹 ↾ ((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))):((𝑋 ∩ 𝐴) ∪ (𝑋 ∖ 𝐴))⟶2o) ∧
(∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |