Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundc GIF version

Theorem bj-charfundc 15882
Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.)
Hypotheses
Ref Expression
bj-charfundc.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
bj-charfundc.dc (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
Assertion
Ref Expression
bj-charfundc (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem bj-charfundc
StepHypRef Expression
1 bj-charfundc.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
2 1lt2o 6541 . . . . 5 1o ∈ 2o
32a1i 9 . . . 4 ((𝜑𝑥𝑋) → 1o ∈ 2o)
4 0lt2o 6540 . . . . 5 ∅ ∈ 2o
54a1i 9 . . . 4 ((𝜑𝑥𝑋) → ∅ ∈ 2o)
6 bj-charfundc.dc . . . . 5 (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
76r19.21bi 2595 . . . 4 ((𝜑𝑥𝑋) → DECID 𝑥𝐴)
83, 5, 7ifcldcd 3613 . . 3 ((𝜑𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 2o)
91, 8fmpt3d 5749 . 2 (𝜑𝐹:𝑋⟶2o)
10 inss1 3397 . . . . . . . 8 (𝑋𝐴) ⊆ 𝑋
1110a1i 9 . . . . . . 7 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
1211sseld 3196 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋))
1312imdistani 445 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝜑𝑥𝑋))
141, 8fvmpt2d 5679 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
1513, 14syl 14 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
16 simpr 110 . . . . . 6 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
1716elin2d 3367 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝐴)
1817iftrued 3582 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = 1o)
1915, 18eqtrd 2239 . . 3 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = 1o)
2019ralrimiva 2580 . 2 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o)
21 difssd 3304 . . . . . . 7 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
2221sseld 3196 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋))
2322imdistani 445 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝜑𝑥𝑋))
2423, 14syl 14 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
25 simpr 110 . . . . . 6 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
2625eldifbd 3182 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → ¬ 𝑥𝐴)
2726iffalsed 3585 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = ∅)
2824, 27eqtrd 2239 . . 3 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = ∅)
2928ralrimiva 2580 . 2 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)
309, 20, 29jca32 310 1 (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  cdif 3167  cin 3169  wss 3170  c0 3464  ifcif 3575  cmpt 4113  wf 5276  cfv 5280  1oc1o 6508  2oc2o 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-1o 6515  df-2o 6516
This theorem is referenced by:  bj-charfunbi  15885
  Copyright terms: Public domain W3C validator