![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfundc | GIF version |
Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.) |
Ref | Expression |
---|---|
bj-charfundc.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
bj-charfundc.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
bj-charfundc | ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-charfundc.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) | |
2 | 1lt2o 6497 | . . . . 5 ⊢ 1o ∈ 2o | |
3 | 2 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1o ∈ 2o) |
4 | 0lt2o 6496 | . . . . 5 ⊢ ∅ ∈ 2o | |
5 | 4 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∅ ∈ 2o) |
6 | bj-charfundc.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) | |
7 | 6 | r19.21bi 2582 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → DECID 𝑥 ∈ 𝐴) |
8 | 3, 5, 7 | ifcldcd 3594 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 2o) |
9 | 1, 8 | fmpt3d 5715 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶2o) |
10 | inss1 3380 | . . . . . . . 8 ⊢ (𝑋 ∩ 𝐴) ⊆ 𝑋 | |
11 | 10 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∩ 𝐴) ⊆ 𝑋) |
12 | 11 | sseld 3179 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋 ∩ 𝐴) → 𝑥 ∈ 𝑋)) |
13 | 12 | imdistani 445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝜑 ∧ 𝑥 ∈ 𝑋)) |
14 | 1, 8 | fvmpt2d 5645 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
15 | 13, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
16 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) | |
17 | 16 | elin2d 3350 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
18 | 17 | iftrued 3565 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) = 1o) |
19 | 15, 18 | eqtrd 2226 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = 1o) |
20 | 19 | ralrimiva 2567 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o) |
21 | difssd 3287 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∖ 𝐴) ⊆ 𝑋) | |
22 | 21 | sseld 3179 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ 𝐴) → 𝑥 ∈ 𝑋)) |
23 | 22 | imdistani 445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝜑 ∧ 𝑥 ∈ 𝑋)) |
24 | 23, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
25 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝑥 ∈ (𝑋 ∖ 𝐴)) | |
26 | 25 | eldifbd 3166 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
27 | 26 | iffalsed 3568 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) = ∅) |
28 | 24, 27 | eqtrd 2226 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = ∅) |
29 | 28 | ralrimiva 2567 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅) |
30 | 9, 20, 29 | jca32 310 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∖ cdif 3151 ∩ cin 3153 ⊆ wss 3154 ∅c0 3447 ifcif 3558 ↦ cmpt 4091 ⟶wf 5251 ‘cfv 5255 1oc1o 6464 2oc2o 6465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-1o 6471 df-2o 6472 |
This theorem is referenced by: bj-charfunbi 15373 |
Copyright terms: Public domain | W3C validator |