| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfundc | GIF version | ||
| Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| bj-charfundc.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
| bj-charfundc.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| bj-charfundc | ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-charfundc.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) | |
| 2 | 1lt2o 6586 | . . . . 5 ⊢ 1o ∈ 2o | |
| 3 | 2 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1o ∈ 2o) |
| 4 | 0lt2o 6585 | . . . . 5 ⊢ ∅ ∈ 2o | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∅ ∈ 2o) |
| 6 | bj-charfundc.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) | |
| 7 | 6 | r19.21bi 2618 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → DECID 𝑥 ∈ 𝐴) |
| 8 | 3, 5, 7 | ifcldcd 3640 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 2o) |
| 9 | 1, 8 | fmpt3d 5790 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶2o) |
| 10 | inss1 3424 | . . . . . . . 8 ⊢ (𝑋 ∩ 𝐴) ⊆ 𝑋 | |
| 11 | 10 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∩ 𝐴) ⊆ 𝑋) |
| 12 | 11 | sseld 3223 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋 ∩ 𝐴) → 𝑥 ∈ 𝑋)) |
| 13 | 12 | imdistani 445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝜑 ∧ 𝑥 ∈ 𝑋)) |
| 14 | 1, 8 | fvmpt2d 5720 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 15 | 13, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 16 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) | |
| 17 | 16 | elin2d 3394 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
| 18 | 17 | iftrued 3609 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) = 1o) |
| 19 | 15, 18 | eqtrd 2262 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = 1o) |
| 20 | 19 | ralrimiva 2603 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o) |
| 21 | difssd 3331 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∖ 𝐴) ⊆ 𝑋) | |
| 22 | 21 | sseld 3223 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ 𝐴) → 𝑥 ∈ 𝑋)) |
| 23 | 22 | imdistani 445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝜑 ∧ 𝑥 ∈ 𝑋)) |
| 24 | 23, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 25 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝑥 ∈ (𝑋 ∖ 𝐴)) | |
| 26 | 25 | eldifbd 3209 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
| 27 | 26 | iffalsed 3612 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) = ∅) |
| 28 | 24, 27 | eqtrd 2262 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = ∅) |
| 29 | 28 | ralrimiva 2603 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅) |
| 30 | 9, 20, 29 | jca32 310 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∖ cdif 3194 ∩ cin 3196 ⊆ wss 3197 ∅c0 3491 ifcif 3602 ↦ cmpt 4144 ⟶wf 5313 ‘cfv 5317 1oc1o 6553 2oc2o 6554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-1o 6560 df-2o 6561 |
| This theorem is referenced by: bj-charfunbi 16132 |
| Copyright terms: Public domain | W3C validator |