Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfundc | GIF version |
Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.) |
Ref | Expression |
---|---|
bj-charfundc.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
bj-charfundc.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
bj-charfundc | ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-charfundc.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) | |
2 | 1lt2o 6410 | . . . . 5 ⊢ 1o ∈ 2o | |
3 | 2 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1o ∈ 2o) |
4 | 0lt2o 6409 | . . . . 5 ⊢ ∅ ∈ 2o | |
5 | 4 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∅ ∈ 2o) |
6 | bj-charfundc.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) | |
7 | 6 | r19.21bi 2554 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → DECID 𝑥 ∈ 𝐴) |
8 | 3, 5, 7 | ifcldcd 3555 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 2o) |
9 | 1, 8 | fmpt3d 5641 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶2o) |
10 | inss1 3342 | . . . . . . . 8 ⊢ (𝑋 ∩ 𝐴) ⊆ 𝑋 | |
11 | 10 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∩ 𝐴) ⊆ 𝑋) |
12 | 11 | sseld 3141 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋 ∩ 𝐴) → 𝑥 ∈ 𝑋)) |
13 | 12 | imdistani 442 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝜑 ∧ 𝑥 ∈ 𝑋)) |
14 | 1, 8 | fvmpt2d 5572 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
15 | 13, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
16 | simpr 109 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) | |
17 | 16 | elin2d 3312 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
18 | 17 | iftrued 3527 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) = 1o) |
19 | 15, 18 | eqtrd 2198 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = 1o) |
20 | 19 | ralrimiva 2539 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o) |
21 | difssd 3249 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∖ 𝐴) ⊆ 𝑋) | |
22 | 21 | sseld 3141 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ 𝐴) → 𝑥 ∈ 𝑋)) |
23 | 22 | imdistani 442 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝜑 ∧ 𝑥 ∈ 𝑋)) |
24 | 23, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
25 | simpr 109 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝑥 ∈ (𝑋 ∖ 𝐴)) | |
26 | 25 | eldifbd 3128 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
27 | 26 | iffalsed 3530 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) = ∅) |
28 | 24, 27 | eqtrd 2198 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = ∅) |
29 | 28 | ralrimiva 2539 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅) |
30 | 9, 20, 29 | jca32 308 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∖ cdif 3113 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 ifcif 3520 ↦ cmpt 4043 ⟶wf 5184 ‘cfv 5188 1oc1o 6377 2oc2o 6378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-1o 6384 df-2o 6385 |
This theorem is referenced by: bj-charfunbi 13693 |
Copyright terms: Public domain | W3C validator |