Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundc GIF version

Theorem bj-charfundc 15300
Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.)
Hypotheses
Ref Expression
bj-charfundc.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
bj-charfundc.dc (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
Assertion
Ref Expression
bj-charfundc (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem bj-charfundc
StepHypRef Expression
1 bj-charfundc.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
2 1lt2o 6495 . . . . 5 1o ∈ 2o
32a1i 9 . . . 4 ((𝜑𝑥𝑋) → 1o ∈ 2o)
4 0lt2o 6494 . . . . 5 ∅ ∈ 2o
54a1i 9 . . . 4 ((𝜑𝑥𝑋) → ∅ ∈ 2o)
6 bj-charfundc.dc . . . . 5 (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
76r19.21bi 2582 . . . 4 ((𝜑𝑥𝑋) → DECID 𝑥𝐴)
83, 5, 7ifcldcd 3593 . . 3 ((𝜑𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 2o)
91, 8fmpt3d 5714 . 2 (𝜑𝐹:𝑋⟶2o)
10 inss1 3379 . . . . . . . 8 (𝑋𝐴) ⊆ 𝑋
1110a1i 9 . . . . . . 7 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
1211sseld 3178 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋))
1312imdistani 445 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝜑𝑥𝑋))
141, 8fvmpt2d 5644 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
1513, 14syl 14 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
16 simpr 110 . . . . . 6 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
1716elin2d 3349 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝐴)
1817iftrued 3564 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = 1o)
1915, 18eqtrd 2226 . . 3 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = 1o)
2019ralrimiva 2567 . 2 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o)
21 difssd 3286 . . . . . . 7 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
2221sseld 3178 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋))
2322imdistani 445 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝜑𝑥𝑋))
2423, 14syl 14 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
25 simpr 110 . . . . . 6 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
2625eldifbd 3165 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → ¬ 𝑥𝐴)
2726iffalsed 3567 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = ∅)
2824, 27eqtrd 2226 . . 3 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = ∅)
2928ralrimiva 2567 . 2 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)
309, 20, 29jca32 310 1 (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2164  wral 2472  cdif 3150  cin 3152  wss 3153  c0 3446  ifcif 3557  cmpt 4090  wf 5250  cfv 5254  1oc1o 6462  2oc2o 6463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-1o 6469  df-2o 6470
This theorem is referenced by:  bj-charfunbi  15303
  Copyright terms: Public domain W3C validator