Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundc GIF version

Theorem bj-charfundc 15608
Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.)
Hypotheses
Ref Expression
bj-charfundc.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
bj-charfundc.dc (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
Assertion
Ref Expression
bj-charfundc (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem bj-charfundc
StepHypRef Expression
1 bj-charfundc.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
2 1lt2o 6518 . . . . 5 1o ∈ 2o
32a1i 9 . . . 4 ((𝜑𝑥𝑋) → 1o ∈ 2o)
4 0lt2o 6517 . . . . 5 ∅ ∈ 2o
54a1i 9 . . . 4 ((𝜑𝑥𝑋) → ∅ ∈ 2o)
6 bj-charfundc.dc . . . . 5 (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
76r19.21bi 2593 . . . 4 ((𝜑𝑥𝑋) → DECID 𝑥𝐴)
83, 5, 7ifcldcd 3607 . . 3 ((𝜑𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 2o)
91, 8fmpt3d 5730 . 2 (𝜑𝐹:𝑋⟶2o)
10 inss1 3392 . . . . . . . 8 (𝑋𝐴) ⊆ 𝑋
1110a1i 9 . . . . . . 7 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
1211sseld 3191 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋))
1312imdistani 445 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝜑𝑥𝑋))
141, 8fvmpt2d 5660 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
1513, 14syl 14 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
16 simpr 110 . . . . . 6 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
1716elin2d 3362 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝐴)
1817iftrued 3577 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = 1o)
1915, 18eqtrd 2237 . . 3 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = 1o)
2019ralrimiva 2578 . 2 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o)
21 difssd 3299 . . . . . . 7 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
2221sseld 3191 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋))
2322imdistani 445 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝜑𝑥𝑋))
2423, 14syl 14 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
25 simpr 110 . . . . . 6 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
2625eldifbd 3177 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → ¬ 𝑥𝐴)
2726iffalsed 3580 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = ∅)
2824, 27eqtrd 2237 . . 3 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = ∅)
2928ralrimiva 2578 . 2 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)
309, 20, 29jca32 310 1 (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1372  wcel 2175  wral 2483  cdif 3162  cin 3164  wss 3165  c0 3459  ifcif 3570  cmpt 4104  wf 5264  cfv 5268  1oc1o 6485  2oc2o 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-1o 6492  df-2o 6493
This theorem is referenced by:  bj-charfunbi  15611
  Copyright terms: Public domain W3C validator