Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-charfundc GIF version

Theorem bj-charfundc 13690
Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.)
Hypotheses
Ref Expression
bj-charfundc.1 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
bj-charfundc.dc (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
Assertion
Ref Expression
bj-charfundc (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem bj-charfundc
StepHypRef Expression
1 bj-charfundc.1 . . 3 (𝜑𝐹 = (𝑥𝑋 ↦ if(𝑥𝐴, 1o, ∅)))
2 1lt2o 6410 . . . . 5 1o ∈ 2o
32a1i 9 . . . 4 ((𝜑𝑥𝑋) → 1o ∈ 2o)
4 0lt2o 6409 . . . . 5 ∅ ∈ 2o
54a1i 9 . . . 4 ((𝜑𝑥𝑋) → ∅ ∈ 2o)
6 bj-charfundc.dc . . . . 5 (𝜑 → ∀𝑥𝑋 DECID 𝑥𝐴)
76r19.21bi 2554 . . . 4 ((𝜑𝑥𝑋) → DECID 𝑥𝐴)
83, 5, 7ifcldcd 3555 . . 3 ((𝜑𝑥𝑋) → if(𝑥𝐴, 1o, ∅) ∈ 2o)
91, 8fmpt3d 5641 . 2 (𝜑𝐹:𝑋⟶2o)
10 inss1 3342 . . . . . . . 8 (𝑋𝐴) ⊆ 𝑋
1110a1i 9 . . . . . . 7 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
1211sseld 3141 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋))
1312imdistani 442 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝜑𝑥𝑋))
141, 8fvmpt2d 5572 . . . . 5 ((𝜑𝑥𝑋) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
1513, 14syl 14 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
16 simpr 109 . . . . . 6 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
1716elin2d 3312 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥𝐴)
1817iftrued 3527 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = 1o)
1915, 18eqtrd 2198 . . 3 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = 1o)
2019ralrimiva 2539 . 2 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o)
21 difssd 3249 . . . . . . 7 (𝜑 → (𝑋𝐴) ⊆ 𝑋)
2221sseld 3141 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑋𝐴) → 𝑥𝑋))
2322imdistani 442 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝜑𝑥𝑋))
2423, 14syl 14 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = if(𝑥𝐴, 1o, ∅))
25 simpr 109 . . . . . 6 ((𝜑𝑥 ∈ (𝑋𝐴)) → 𝑥 ∈ (𝑋𝐴))
2625eldifbd 3128 . . . . 5 ((𝜑𝑥 ∈ (𝑋𝐴)) → ¬ 𝑥𝐴)
2726iffalsed 3530 . . . 4 ((𝜑𝑥 ∈ (𝑋𝐴)) → if(𝑥𝐴, 1o, ∅) = ∅)
2824, 27eqtrd 2198 . . 3 ((𝜑𝑥 ∈ (𝑋𝐴)) → (𝐹𝑥) = ∅)
2928ralrimiva 2539 . 2 (𝜑 → ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)
309, 20, 29jca32 308 1 (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋𝐴)(𝐹𝑥) = ∅)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 824   = wceq 1343  wcel 2136  wral 2444  cdif 3113  cin 3115  wss 3116  c0 3409  ifcif 3520  cmpt 4043  wf 5184  cfv 5188  1oc1o 6377  2oc2o 6378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-1o 6384  df-2o 6385
This theorem is referenced by:  bj-charfunbi  13693
  Copyright terms: Public domain W3C validator