| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-charfundc | GIF version | ||
| Description: Properties of the characteristic function on the class 𝑋 of the class 𝐴, provided membership in 𝐴 is decidable in 𝑋. (Contributed by BJ, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| bj-charfundc.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) |
| bj-charfundc.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| bj-charfundc | ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-charfundc.1 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ 𝐴, 1o, ∅))) | |
| 2 | 1lt2o 6541 | . . . . 5 ⊢ 1o ∈ 2o | |
| 3 | 2 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1o ∈ 2o) |
| 4 | 0lt2o 6540 | . . . . 5 ⊢ ∅ ∈ 2o | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∅ ∈ 2o) |
| 6 | bj-charfundc.dc | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 DECID 𝑥 ∈ 𝐴) | |
| 7 | 6 | r19.21bi 2595 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → DECID 𝑥 ∈ 𝐴) |
| 8 | 3, 5, 7 | ifcldcd 3613 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → if(𝑥 ∈ 𝐴, 1o, ∅) ∈ 2o) |
| 9 | 1, 8 | fmpt3d 5749 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶2o) |
| 10 | inss1 3397 | . . . . . . . 8 ⊢ (𝑋 ∩ 𝐴) ⊆ 𝑋 | |
| 11 | 10 | a1i 9 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∩ 𝐴) ⊆ 𝑋) |
| 12 | 11 | sseld 3196 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋 ∩ 𝐴) → 𝑥 ∈ 𝑋)) |
| 13 | 12 | imdistani 445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝜑 ∧ 𝑥 ∈ 𝑋)) |
| 14 | 1, 8 | fvmpt2d 5679 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 15 | 13, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 16 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ (𝑋 ∩ 𝐴)) | |
| 17 | 16 | elin2d 3367 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → 𝑥 ∈ 𝐴) |
| 18 | 17 | iftrued 3582 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) = 1o) |
| 19 | 15, 18 | eqtrd 2239 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∩ 𝐴)) → (𝐹‘𝑥) = 1o) |
| 20 | 19 | ralrimiva 2580 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o) |
| 21 | difssd 3304 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∖ 𝐴) ⊆ 𝑋) | |
| 22 | 21 | sseld 3196 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ (𝑋 ∖ 𝐴) → 𝑥 ∈ 𝑋)) |
| 23 | 22 | imdistani 445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝜑 ∧ 𝑥 ∈ 𝑋)) |
| 24 | 23, 14 | syl 14 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = if(𝑥 ∈ 𝐴, 1o, ∅)) |
| 25 | simpr 110 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → 𝑥 ∈ (𝑋 ∖ 𝐴)) | |
| 26 | 25 | eldifbd 3182 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → ¬ 𝑥 ∈ 𝐴) |
| 27 | 26 | iffalsed 3585 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → if(𝑥 ∈ 𝐴, 1o, ∅) = ∅) |
| 28 | 24, 27 | eqtrd 2239 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑋 ∖ 𝐴)) → (𝐹‘𝑥) = ∅) |
| 29 | 28 | ralrimiva 2580 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅) |
| 30 | 9, 20, 29 | jca32 310 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶2o ∧ (∀𝑥 ∈ (𝑋 ∩ 𝐴)(𝐹‘𝑥) = 1o ∧ ∀𝑥 ∈ (𝑋 ∖ 𝐴)(𝐹‘𝑥) = ∅))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ∖ cdif 3167 ∩ cin 3169 ⊆ wss 3170 ∅c0 3464 ifcif 3575 ↦ cmpt 4113 ⟶wf 5276 ‘cfv 5280 1oc1o 6508 2oc2o 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-1o 6515 df-2o 6516 |
| This theorem is referenced by: bj-charfunbi 15885 |
| Copyright terms: Public domain | W3C validator |