ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjeq2dv GIF version

Theorem disjeq2dv 4064
Description: Equality deduction for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjeq2dv.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
disjeq2dv (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem disjeq2dv
StepHypRef Expression
1 disjeq2dv.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 2603 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 disjeq2 4063 . 2 (∀𝑥𝐴 𝐵 = 𝐶 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
42, 3syl 14 1 (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  Disj wdisj 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-rmo 2516  df-in 3203  df-ss 3210  df-disj 4060
This theorem is referenced by:  disjeq12d  4068
  Copyright terms: Public domain W3C validator