ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjr GIF version

Theorem disjr 3487
Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
disjr ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disjr
StepHypRef Expression
1 incom 3342 . . 3 (𝐴𝐵) = (𝐵𝐴)
21eqeq1i 2197 . 2 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
3 disj 3486 . 2 ((𝐵𝐴) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
42, 3bitri 184 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1364  wcel 2160  wral 2468  cin 3143  c0 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-dif 3146  df-in 3150  df-nul 3438
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator