ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disjr GIF version

Theorem disjr 3474
Description: Two ways of saying that two classes are disjoint. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
disjr ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem disjr
StepHypRef Expression
1 incom 3329 . . 3 (𝐴𝐵) = (𝐵𝐴)
21eqeq1i 2185 . 2 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
3 disj 3473 . 2 ((𝐵𝐴) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
42, 3bitri 184 1 ((𝐴𝐵) = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 105   = wceq 1353  wcel 2148  wral 2455  cin 3130  c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-in 3137  df-nul 3425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator