| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq1i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq1 2211 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: ssequn2 3345 dfss1 3376 disj 3508 disjr 3509 undisj1 3517 undisj2 3518 uneqdifeqim 3545 reusn 3703 rabsneu 3705 eusn 3706 iin0r 4212 opeqsn 4296 unisuc 4459 onsucelsucexmid 4577 sucprcreg 4596 onintexmid 4620 dmopab3 4890 dm0rn0 4894 ssdmres 4980 imadisj 5043 args 5050 intirr 5068 dminxp 5126 dfrel3 5139 fntpg 5329 fncnv 5339 f0rn0 5469 dff1o4 5529 dffv4g 5572 fvun2 5645 fnreseql 5689 funopdmsn 5763 riota1 5917 riota2df 5919 fnotovb 5987 ovid 6061 ov 6064 ovg 6084 f1od2 6320 frec0g 6482 diffitest 6983 ismkvnex 7256 prarloclem5 7612 renegcl 8332 elznn0 9386 seqf1oglem1 10662 seqf1oglem2 10663 hashunlem 10947 maxclpr 11475 gausslemma2d 15488 lgseisenlem1 15489 2lgslem4 15522 ex-ceil 15595 nninfsellemqall 15885 nninfomni 15889 iswomni0 15923 |
| Copyright terms: Public domain | W3C validator |