| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq1i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq1 2203 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: ssequn2 3337 dfss1 3368 disj 3500 disjr 3501 undisj1 3509 undisj2 3510 uneqdifeqim 3537 reusn 3694 rabsneu 3696 eusn 3697 iin0r 4203 opeqsn 4286 unisuc 4449 onsucelsucexmid 4567 sucprcreg 4586 onintexmid 4610 dmopab3 4880 dm0rn0 4884 ssdmres 4969 imadisj 5032 args 5039 intirr 5057 dminxp 5115 dfrel3 5128 fntpg 5315 fncnv 5325 f0rn0 5455 dff1o4 5515 dffv4g 5558 fvun2 5631 fnreseql 5675 riota1 5899 riota2df 5901 fnotovb 5969 ovid 6043 ov 6046 ovg 6066 f1od2 6302 frec0g 6464 diffitest 6957 ismkvnex 7230 prarloclem5 7584 renegcl 8304 elznn0 9358 seqf1oglem1 10628 seqf1oglem2 10629 hashunlem 10913 maxclpr 11404 gausslemma2d 15394 lgseisenlem1 15395 2lgslem4 15428 ex-ceil 15456 nninfsellemqall 15746 nninfomni 15750 iswomni0 15782 |
| Copyright terms: Public domain | W3C validator |