| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq1i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq1 2236 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: ssequn2 3377 dfss1 3408 disj 3540 disjr 3541 undisj1 3549 undisj2 3550 uneqdifeqim 3577 reusn 3737 rabsneu 3739 eusn 3740 iin0r 4252 opeqsn 4338 unisuc 4503 onsucelsucexmid 4621 sucprcreg 4640 onintexmid 4664 dmopab3 4935 dm0rn0 4939 ssdmres 5026 imadisj 5089 args 5096 intirr 5114 dminxp 5172 dfrel3 5185 cbviotavw 5283 fntpg 5376 fncnv 5386 f0rn0 5519 dff1o4 5579 dffv4g 5623 fvun2 5700 fnreseql 5744 funopdmsn 5818 riota1 5973 riota2df 5975 riotaeqimp 5978 fnbrovb 6045 fnotovb 6046 ovid 6120 ov 6123 ovg 6143 f1od2 6379 frec0g 6541 diffitest 7045 ismkvnex 7318 prarloclem5 7683 renegcl 8403 elznn0 9457 seqf1oglem1 10736 seqf1oglem2 10737 hashunlem 11021 maxclpr 11728 gausslemma2d 15742 lgseisenlem1 15743 2lgslem4 15776 edg0iedg0g 15860 ushgredgedg 16018 ushgredgedgloop 16020 ex-ceil 16048 nninfsellemqall 16340 nninfomni 16344 iswomni0 16378 |
| Copyright terms: Public domain | W3C validator |