Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq1i | GIF version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqeq1i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqeq1 2172 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: ssequn2 3295 dfss1 3326 disj 3457 disjr 3458 undisj1 3466 undisj2 3467 uneqdifeqim 3494 reusn 3647 rabsneu 3649 eusn 3650 iin0r 4148 opeqsn 4230 unisuc 4391 onsucelsucexmid 4507 sucprcreg 4526 onintexmid 4550 dmopab3 4817 dm0rn0 4821 ssdmres 4906 imadisj 4966 args 4973 intirr 4990 dminxp 5048 dfrel3 5061 fntpg 5244 fncnv 5254 f0rn0 5382 dff1o4 5440 dffv4g 5483 fvun2 5553 fnreseql 5595 riota1 5816 riota2df 5818 fnotovb 5885 ovid 5958 ov 5961 ovg 5980 f1od2 6203 frec0g 6365 diffitest 6853 ismkvnex 7119 prarloclem5 7441 renegcl 8159 elznn0 9206 hashunlem 10717 maxclpr 11164 ex-ceil 13607 nninfsellemqall 13895 nninfomni 13899 iswomni0 13930 |
Copyright terms: Public domain | W3C validator |