Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq1i | GIF version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqeq1i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqeq1 2177 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: ssequn2 3300 dfss1 3331 disj 3463 disjr 3464 undisj1 3472 undisj2 3473 uneqdifeqim 3500 reusn 3654 rabsneu 3656 eusn 3657 iin0r 4155 opeqsn 4237 unisuc 4398 onsucelsucexmid 4514 sucprcreg 4533 onintexmid 4557 dmopab3 4824 dm0rn0 4828 ssdmres 4913 imadisj 4973 args 4980 intirr 4997 dminxp 5055 dfrel3 5068 fntpg 5254 fncnv 5264 f0rn0 5392 dff1o4 5450 dffv4g 5493 fvun2 5563 fnreseql 5606 riota1 5827 riota2df 5829 fnotovb 5896 ovid 5969 ov 5972 ovg 5991 f1od2 6214 frec0g 6376 diffitest 6865 ismkvnex 7131 prarloclem5 7462 renegcl 8180 elznn0 9227 hashunlem 10739 maxclpr 11186 ex-ceil 13761 nninfsellemqall 14048 nninfomni 14052 iswomni0 14083 |
Copyright terms: Public domain | W3C validator |