![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeq1i | GIF version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqeq1i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqeq1 2200 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: ssequn2 3332 dfss1 3363 disj 3495 disjr 3496 undisj1 3504 undisj2 3505 uneqdifeqim 3532 reusn 3689 rabsneu 3691 eusn 3692 iin0r 4198 opeqsn 4281 unisuc 4444 onsucelsucexmid 4562 sucprcreg 4581 onintexmid 4605 dmopab3 4875 dm0rn0 4879 ssdmres 4964 imadisj 5027 args 5034 intirr 5052 dminxp 5110 dfrel3 5123 fntpg 5310 fncnv 5320 f0rn0 5448 dff1o4 5508 dffv4g 5551 fvun2 5624 fnreseql 5668 riota1 5892 riota2df 5894 fnotovb 5961 ovid 6035 ov 6038 ovg 6057 f1od2 6288 frec0g 6450 diffitest 6943 ismkvnex 7214 prarloclem5 7560 renegcl 8280 elznn0 9332 seqf1oglem1 10590 seqf1oglem2 10591 hashunlem 10875 maxclpr 11366 gausslemma2d 15185 lgseisenlem1 15186 ex-ceil 15218 nninfsellemqall 15505 nninfomni 15509 iswomni0 15541 |
Copyright terms: Public domain | W3C validator |