| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq1i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq1 2213 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: ssequn2 3350 dfss1 3381 disj 3513 disjr 3514 undisj1 3522 undisj2 3523 uneqdifeqim 3550 reusn 3709 rabsneu 3711 eusn 3712 iin0r 4221 opeqsn 4305 unisuc 4468 onsucelsucexmid 4586 sucprcreg 4605 onintexmid 4629 dmopab3 4900 dm0rn0 4904 ssdmres 4990 imadisj 5053 args 5060 intirr 5078 dminxp 5136 dfrel3 5149 fntpg 5339 fncnv 5349 f0rn0 5482 dff1o4 5542 dffv4g 5586 fvun2 5659 fnreseql 5703 funopdmsn 5777 riota1 5931 riota2df 5933 fnotovb 6001 ovid 6075 ov 6078 ovg 6098 f1od2 6334 frec0g 6496 diffitest 6999 ismkvnex 7272 prarloclem5 7633 renegcl 8353 elznn0 9407 seqf1oglem1 10686 seqf1oglem2 10687 hashunlem 10971 maxclpr 11608 gausslemma2d 15621 lgseisenlem1 15622 2lgslem4 15655 edg0iedg0g 15737 ex-ceil 15801 nninfsellemqall 16093 nninfomni 16097 iswomni0 16131 |
| Copyright terms: Public domain | W3C validator |