Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeq1i | GIF version |
Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqeq1i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqeq1 2161 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-4 1487 ax-17 1503 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-cleq 2147 |
This theorem is referenced by: ssequn2 3276 dfss1 3307 disj 3438 disjr 3439 undisj1 3447 undisj2 3448 uneqdifeqim 3475 reusn 3626 rabsneu 3628 eusn 3629 iin0r 4125 opeqsn 4207 unisuc 4368 onsucelsucexmid 4483 sucprcreg 4502 onintexmid 4526 dmopab3 4792 dm0rn0 4796 ssdmres 4881 imadisj 4941 args 4948 intirr 4965 dminxp 5023 dfrel3 5036 fntpg 5219 fncnv 5229 f0rn0 5357 dff1o4 5415 dffv4g 5458 fvun2 5528 fnreseql 5570 riota1 5788 riota2df 5790 fnotovb 5854 ovid 5927 ov 5930 ovg 5949 f1od2 6172 frec0g 6334 diffitest 6821 ismkvnex 7077 prarloclem5 7399 renegcl 8115 elznn0 9161 hashunlem 10655 maxclpr 11099 ex-ceil 13248 nninfsellemqall 13536 nninfomni 13540 iswomni0 13571 |
Copyright terms: Public domain | W3C validator |