| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeq1i | GIF version | ||
| Description: Inference from equality to equivalence of equalities. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqeq1i | ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqeq1 2211 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 = 𝐶 ↔ 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: ssequn2 3345 dfss1 3376 disj 3508 disjr 3509 undisj1 3517 undisj2 3518 uneqdifeqim 3545 reusn 3703 rabsneu 3705 eusn 3706 iin0r 4212 opeqsn 4295 unisuc 4458 onsucelsucexmid 4576 sucprcreg 4595 onintexmid 4619 dmopab3 4889 dm0rn0 4893 ssdmres 4978 imadisj 5041 args 5048 intirr 5066 dminxp 5124 dfrel3 5137 fntpg 5324 fncnv 5334 f0rn0 5464 dff1o4 5524 dffv4g 5567 fvun2 5640 fnreseql 5684 riota1 5908 riota2df 5910 fnotovb 5978 ovid 6052 ov 6055 ovg 6075 f1od2 6311 frec0g 6473 diffitest 6966 ismkvnex 7239 prarloclem5 7595 renegcl 8315 elznn0 9369 seqf1oglem1 10645 seqf1oglem2 10646 hashunlem 10930 maxclpr 11452 gausslemma2d 15464 lgseisenlem1 15465 2lgslem4 15498 ex-ceil 15526 nninfsellemqall 15816 nninfomni 15820 iswomni0 15854 |
| Copyright terms: Public domain | W3C validator |