| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir2an.1 | ⊢ 𝜓 |
| mpbir2an.2 | ⊢ 𝜒 |
| mpbiran2an.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbir2an | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2an.2 | . 2 ⊢ 𝜒 | |
| 2 | mpbir2an.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpbiran2an.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 4 | 2, 3 | mpbiran 942 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 5 | 1, 4 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3pm3.2i 1177 euequ1 2140 eqssi 3200 elini 3348 dtruarb 4225 opnzi 4269 so0 4362 we0 4397 ord0 4427 ordon 4523 onsucelsucexmidlem1 4565 regexmidlemm 4569 ordpwsucexmid 4607 reg3exmidlemwe 4616 ordom 4644 funi 5291 funcnvsn 5304 funinsn 5308 fnresi 5378 fn0 5380 f0 5451 fconst 5456 f10 5541 f1o0 5544 f1oi 5545 f1osn 5547 isoid 5860 iso0 5867 acexmidlem2 5922 fo1st 6224 fo2nd 6225 iordsmo 6364 tfrlem7 6384 tfrexlem 6401 mapsnf1o2 6764 1domsn 6887 inresflem 7135 0ct 7182 infnninf 7199 infnninfOLD 7200 exmidonfinlem 7272 exmidaclem 7291 pw1on 7309 sucpw1nel3 7316 1pi 7399 prarloclemcalc 7586 ltsopr 7680 ltsosr 7848 cnm 7916 axicn 7947 axaddf 7952 axmulf 7953 nnindnn 7977 mpomulf 8033 ltso 8121 negiso 8999 nnind 9023 0z 9354 dfuzi 9453 cnref1o 9742 elrpii 9748 xrltso 9888 0e0icopnf 10071 0e0iccpnf 10072 fz0to4untppr 10216 fldiv4p1lem1div2 10412 expcl2lemap 10660 expclzaplem 10672 expge0 10684 expge1 10685 xrnegiso 11444 fclim 11476 eff2 11862 reeff1 11882 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 sin01gt0 11944 egt2lt3 11962 halfleoddlt 12076 2prm 12320 3prm 12321 1arith 12561 setsslnid 12755 xpsff1o 13051 isabli 13506 rngmgpf 13569 mgpf 13643 zringnzr 14234 fntopon 14344 istpsi 14359 ismeti 14666 cnfldms 14856 tgqioo 14875 addcncntoplem 14881 divcnap 14885 abscncf 14905 recncf 14906 imcncf 14907 cjcncf 14908 maxcncf 14935 mincncf 14936 dveflem 15046 reeff1o 15093 reefiso 15097 ioocosf1o 15174 lgslem2 15326 lgsfcl2 15331 lgsne0 15363 2lgslem1b 15414 ex-fl 15455 bj-indint 15661 bj-omord 15690 012of 15724 2o01f 15725 0nninf 15735 peano4nninf 15737 taupi 15804 |
| Copyright terms: Public domain | W3C validator |