Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir2an | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir2an.1 | ⊢ 𝜓 |
mpbir2an.2 | ⊢ 𝜒 |
mpbiran2an.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbir2an | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 | . 2 ⊢ 𝜒 | |
2 | mpbir2an.1 | . . 3 ⊢ 𝜓 | |
3 | mpbiran2an.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
4 | 2, 3 | mpbiran 930 | . 2 ⊢ (𝜑 ↔ 𝜒) |
5 | 1, 4 | mpbir 145 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3pm3.2i 1165 euequ1 2109 eqssi 3157 elini 3305 dtruarb 4169 opnzi 4212 so0 4303 we0 4338 ord0 4368 ordon 4462 onsucelsucexmidlem1 4504 regexmidlemm 4508 ordpwsucexmid 4546 reg3exmidlemwe 4555 ordom 4583 funi 5219 funcnvsn 5232 funinsn 5236 fnresi 5304 fn0 5306 f0 5377 fconst 5382 f10 5465 f1o0 5468 f1oi 5469 f1osn 5471 isoid 5777 iso0 5784 acexmidlem2 5838 fo1st 6122 fo2nd 6123 iordsmo 6261 tfrlem7 6281 tfrexlem 6298 mapsnf1o2 6658 1domsn 6781 inresflem 7021 0ct 7068 infnninf 7084 infnninfOLD 7085 exmidonfinlem 7145 exmidaclem 7160 pw1on 7178 sucpw1nel3 7185 1pi 7252 prarloclemcalc 7439 ltsopr 7533 ltsosr 7701 cnm 7769 axicn 7800 axaddf 7805 axmulf 7806 nnindnn 7830 ltso 7972 negiso 8846 nnind 8869 0z 9198 dfuzi 9297 cnref1o 9584 elrpii 9588 xrltso 9728 0e0icopnf 9911 0e0iccpnf 9912 fz0to4untppr 10055 fldiv4p1lem1div2 10236 expcl2lemap 10463 expclzaplem 10475 expge0 10487 expge1 10488 xrnegiso 11199 fclim 11231 eff2 11617 reeff1 11637 ef01bndlem 11693 sin01bnd 11694 cos01bnd 11695 sin01gt0 11698 egt2lt3 11716 halfleoddlt 11827 2prm 12055 3prm 12056 1arith 12293 setsslnid 12441 fntopon 12622 istpsi 12637 ismeti 12946 tgqioo 13147 addcncntoplem 13151 divcnap 13155 abscncf 13172 recncf 13173 imcncf 13174 cjcncf 13175 dveflem 13287 reeff1o 13294 reefiso 13298 ioocosf1o 13375 lgslem2 13502 lgsfcl2 13507 lgsne0 13539 ex-fl 13566 bj-indint 13773 bj-omord 13802 012of 13835 2o01f 13836 0nninf 13844 peano4nninf 13846 taupi 13909 |
Copyright terms: Public domain | W3C validator |