![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2an | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir2an.1 | ⊢ 𝜓 |
mpbir2an.2 | ⊢ 𝜒 |
mpbiran2an.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbir2an | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 | . 2 ⊢ 𝜒 | |
2 | mpbir2an.1 | . . 3 ⊢ 𝜓 | |
3 | mpbiran2an.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
4 | 2, 3 | mpbiran 940 | . 2 ⊢ (𝜑 ↔ 𝜒) |
5 | 1, 4 | mpbir 146 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3pm3.2i 1175 euequ1 2121 eqssi 3172 elini 3320 dtruarb 4192 opnzi 4236 so0 4327 we0 4362 ord0 4392 ordon 4486 onsucelsucexmidlem1 4528 regexmidlemm 4532 ordpwsucexmid 4570 reg3exmidlemwe 4579 ordom 4607 funi 5249 funcnvsn 5262 funinsn 5266 fnresi 5334 fn0 5336 f0 5407 fconst 5412 f10 5496 f1o0 5499 f1oi 5500 f1osn 5502 isoid 5811 iso0 5818 acexmidlem2 5872 fo1st 6158 fo2nd 6159 iordsmo 6298 tfrlem7 6318 tfrexlem 6335 mapsnf1o2 6696 1domsn 6819 inresflem 7059 0ct 7106 infnninf 7122 infnninfOLD 7123 exmidonfinlem 7192 exmidaclem 7207 pw1on 7225 sucpw1nel3 7232 1pi 7314 prarloclemcalc 7501 ltsopr 7595 ltsosr 7763 cnm 7831 axicn 7862 axaddf 7867 axmulf 7868 nnindnn 7892 ltso 8035 negiso 8912 nnind 8935 0z 9264 dfuzi 9363 cnref1o 9650 elrpii 9656 xrltso 9796 0e0icopnf 9979 0e0iccpnf 9980 fz0to4untppr 10124 fldiv4p1lem1div2 10305 expcl2lemap 10532 expclzaplem 10544 expge0 10556 expge1 10557 xrnegiso 11270 fclim 11302 eff2 11688 reeff1 11708 ef01bndlem 11764 sin01bnd 11765 cos01bnd 11766 sin01gt0 11769 egt2lt3 11787 halfleoddlt 11899 2prm 12127 3prm 12128 1arith 12365 setsslnid 12514 xpsff1o 12768 isabli 13103 mgpf 13194 zringnzr 13495 fntopon 13527 istpsi 13542 ismeti 13849 tgqioo 14050 addcncntoplem 14054 divcnap 14058 abscncf 14075 recncf 14076 imcncf 14077 cjcncf 14078 dveflem 14190 reeff1o 14197 reefiso 14201 ioocosf1o 14278 lgslem2 14405 lgsfcl2 14410 lgsne0 14442 ex-fl 14480 bj-indint 14686 bj-omord 14715 012of 14748 2o01f 14749 0nninf 14756 peano4nninf 14758 taupi 14823 |
Copyright terms: Public domain | W3C validator |