| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir2an.1 | ⊢ 𝜓 |
| mpbir2an.2 | ⊢ 𝜒 |
| mpbiran2an.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbir2an | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2an.2 | . 2 ⊢ 𝜒 | |
| 2 | mpbir2an.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpbiran2an.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 4 | 2, 3 | mpbiran 942 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 5 | 1, 4 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3pm3.2i 1177 euequ1 2140 eqssi 3200 elini 3348 dtruarb 4225 opnzi 4269 so0 4362 we0 4397 ord0 4427 ordon 4523 onsucelsucexmidlem1 4565 regexmidlemm 4569 ordpwsucexmid 4607 reg3exmidlemwe 4616 ordom 4644 funi 5291 funcnvsn 5304 funinsn 5308 fnresi 5378 fn0 5380 f0 5451 fconst 5456 f10 5541 f1o0 5544 f1oi 5545 f1osn 5547 isoid 5860 iso0 5867 acexmidlem2 5922 fo1st 6224 fo2nd 6225 iordsmo 6364 tfrlem7 6384 tfrexlem 6401 mapsnf1o2 6764 1domsn 6887 inresflem 7135 0ct 7182 infnninf 7199 infnninfOLD 7200 exmidonfinlem 7274 exmidaclem 7293 pw1on 7311 sucpw1nel3 7318 1pi 7401 prarloclemcalc 7588 ltsopr 7682 ltsosr 7850 cnm 7918 axicn 7949 axaddf 7954 axmulf 7955 nnindnn 7979 mpomulf 8035 ltso 8123 negiso 9001 nnind 9025 0z 9356 dfuzi 9455 cnref1o 9744 elrpii 9750 xrltso 9890 0e0icopnf 10073 0e0iccpnf 10074 fz0to4untppr 10218 fldiv4p1lem1div2 10414 expcl2lemap 10662 expclzaplem 10674 expge0 10686 expge1 10687 xrnegiso 11446 fclim 11478 eff2 11864 reeff1 11884 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 sin01gt0 11946 egt2lt3 11964 halfleoddlt 12078 2prm 12322 3prm 12323 1arith 12563 setsslnid 12757 xpsff1o 13053 isabli 13508 rngmgpf 13571 mgpf 13645 zringnzr 14236 fntopon 14346 istpsi 14361 ismeti 14668 cnfldms 14858 tgqioo 14877 addcncntoplem 14883 divcnap 14887 abscncf 14907 recncf 14908 imcncf 14909 cjcncf 14910 maxcncf 14937 mincncf 14938 dveflem 15048 reeff1o 15095 reefiso 15099 ioocosf1o 15176 lgslem2 15328 lgsfcl2 15333 lgsne0 15365 2lgslem1b 15416 ex-fl 15457 bj-indint 15663 bj-omord 15692 012of 15726 2o01f 15727 0nninf 15737 peano4nninf 15739 taupi 15808 |
| Copyright terms: Public domain | W3C validator |