Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpbir2an | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir2an.1 | ⊢ 𝜓 |
mpbir2an.2 | ⊢ 𝜒 |
mpbiran2an.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbir2an | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 | . 2 ⊢ 𝜒 | |
2 | mpbir2an.1 | . . 3 ⊢ 𝜓 | |
3 | mpbiran2an.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
4 | 2, 3 | mpbiran 940 | . 2 ⊢ (𝜑 ↔ 𝜒) |
5 | 1, 4 | mpbir 146 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3pm3.2i 1175 euequ1 2119 eqssi 3169 elini 3317 dtruarb 4186 opnzi 4229 so0 4320 we0 4355 ord0 4385 ordon 4479 onsucelsucexmidlem1 4521 regexmidlemm 4525 ordpwsucexmid 4563 reg3exmidlemwe 4572 ordom 4600 funi 5240 funcnvsn 5253 funinsn 5257 fnresi 5325 fn0 5327 f0 5398 fconst 5403 f10 5487 f1o0 5490 f1oi 5491 f1osn 5493 isoid 5801 iso0 5808 acexmidlem2 5862 fo1st 6148 fo2nd 6149 iordsmo 6288 tfrlem7 6308 tfrexlem 6325 mapsnf1o2 6686 1domsn 6809 inresflem 7049 0ct 7096 infnninf 7112 infnninfOLD 7113 exmidonfinlem 7182 exmidaclem 7197 pw1on 7215 sucpw1nel3 7222 1pi 7289 prarloclemcalc 7476 ltsopr 7570 ltsosr 7738 cnm 7806 axicn 7837 axaddf 7842 axmulf 7843 nnindnn 7867 ltso 8009 negiso 8885 nnind 8908 0z 9237 dfuzi 9336 cnref1o 9623 elrpii 9627 xrltso 9767 0e0icopnf 9950 0e0iccpnf 9951 fz0to4untppr 10094 fldiv4p1lem1div2 10275 expcl2lemap 10502 expclzaplem 10514 expge0 10526 expge1 10527 xrnegiso 11238 fclim 11270 eff2 11656 reeff1 11676 ef01bndlem 11732 sin01bnd 11733 cos01bnd 11734 sin01gt0 11737 egt2lt3 11755 halfleoddlt 11866 2prm 12094 3prm 12095 1arith 12332 setsslnid 12480 isabli 12911 mgpf 13000 fntopon 13102 istpsi 13117 ismeti 13426 tgqioo 13627 addcncntoplem 13631 divcnap 13635 abscncf 13652 recncf 13653 imcncf 13654 cjcncf 13655 dveflem 13767 reeff1o 13774 reefiso 13778 ioocosf1o 13855 lgslem2 13982 lgsfcl2 13987 lgsne0 14019 ex-fl 14046 bj-indint 14252 bj-omord 14281 012of 14314 2o01f 14315 0nninf 14323 peano4nninf 14325 taupi 14388 |
Copyright terms: Public domain | W3C validator |