| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir2an.1 | ⊢ 𝜓 |
| mpbir2an.2 | ⊢ 𝜒 |
| mpbiran2an.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbir2an | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2an.2 | . 2 ⊢ 𝜒 | |
| 2 | mpbir2an.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpbiran2an.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 4 | 2, 3 | mpbiran 946 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 5 | 1, 4 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3pm3.2i 1199 euequ1 2173 eqssi 3240 elini 3388 dtruarb 4275 opnzi 4321 so0 4417 we0 4452 ord0 4482 ordon 4578 onsucelsucexmidlem1 4620 regexmidlemm 4624 ordpwsucexmid 4662 reg3exmidlemwe 4671 ordom 4699 funi 5350 funcnvsn 5366 funinsn 5370 fnresi 5441 fn0 5443 f0 5518 fconst 5523 f10 5608 f1o0 5612 f1oi 5613 f1osn 5615 funopsn 5819 isoid 5940 iso0 5947 acexmidlem2 6004 fo1st 6309 fo2nd 6310 iordsmo 6449 tfrlem7 6469 tfrexlem 6486 mapsnf1o2 6851 1domsn 6984 inresflem 7235 0ct 7282 infnninf 7299 infnninfOLD 7300 exmidonfinlem 7379 exmidaclem 7398 pw1on 7419 sucpw1nel3 7426 1pi 7510 prarloclemcalc 7697 ltsopr 7791 ltsosr 7959 cnm 8027 axicn 8058 axaddf 8063 axmulf 8064 nnindnn 8088 mpomulf 8144 ltso 8232 negiso 9110 nnind 9134 0z 9465 dfuzi 9565 cnref1o 9854 elrpii 9860 xrltso 10000 0e0icopnf 10183 0e0iccpnf 10184 fz0to4untppr 10328 fldiv4p1lem1div2 10533 expcl2lemap 10781 expclzaplem 10793 expge0 10805 expge1 10806 xrnegiso 11781 fclim 11813 eff2 12199 reeff1 12219 ef01bndlem 12275 sin01bnd 12276 cos01bnd 12277 sin01gt0 12281 egt2lt3 12299 halfleoddlt 12413 2prm 12657 3prm 12658 1arith 12898 setsslnid 13092 xpsff1o 13390 isabli 13845 rngmgpf 13908 mgpf 13982 zringnzr 14574 fntopon 14706 istpsi 14721 ismeti 15028 cnfldms 15218 tgqioo 15237 addcncntoplem 15243 divcnap 15247 abscncf 15267 recncf 15268 imcncf 15269 cjcncf 15270 maxcncf 15297 mincncf 15298 dveflem 15408 reeff1o 15455 reefiso 15459 ioocosf1o 15536 lgslem2 15688 lgsfcl2 15693 lgsne0 15725 2lgslem1b 15776 umgrbien 15918 ex-fl 16113 bj-indint 16318 bj-omord 16347 012of 16386 2o01f 16387 0nninf 16400 peano4nninf 16402 taupi 16471 |
| Copyright terms: Public domain | W3C validator |