| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir2an.1 | ⊢ 𝜓 |
| mpbir2an.2 | ⊢ 𝜒 |
| mpbiran2an.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbir2an | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2an.2 | . 2 ⊢ 𝜒 | |
| 2 | mpbir2an.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpbiran2an.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 4 | 2, 3 | mpbiran 945 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 5 | 1, 4 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3pm3.2i 1180 euequ1 2153 eqssi 3220 elini 3368 dtruarb 4254 opnzi 4300 so0 4394 we0 4429 ord0 4459 ordon 4555 onsucelsucexmidlem1 4597 regexmidlemm 4601 ordpwsucexmid 4639 reg3exmidlemwe 4648 ordom 4676 funi 5326 funcnvsn 5342 funinsn 5346 fnresi 5417 fn0 5419 f0 5492 fconst 5497 f10 5582 f1o0 5586 f1oi 5587 f1osn 5589 funopsn 5790 isoid 5907 iso0 5914 acexmidlem2 5971 fo1st 6273 fo2nd 6274 iordsmo 6413 tfrlem7 6433 tfrexlem 6450 mapsnf1o2 6813 1domsn 6946 inresflem 7195 0ct 7242 infnninf 7259 infnninfOLD 7260 exmidonfinlem 7339 exmidaclem 7358 pw1on 7379 sucpw1nel3 7386 1pi 7470 prarloclemcalc 7657 ltsopr 7751 ltsosr 7919 cnm 7987 axicn 8018 axaddf 8023 axmulf 8024 nnindnn 8048 mpomulf 8104 ltso 8192 negiso 9070 nnind 9094 0z 9425 dfuzi 9525 cnref1o 9814 elrpii 9820 xrltso 9960 0e0icopnf 10143 0e0iccpnf 10144 fz0to4untppr 10288 fldiv4p1lem1div2 10492 expcl2lemap 10740 expclzaplem 10752 expge0 10764 expge1 10765 xrnegiso 11739 fclim 11771 eff2 12157 reeff1 12177 ef01bndlem 12233 sin01bnd 12234 cos01bnd 12235 sin01gt0 12239 egt2lt3 12257 halfleoddlt 12371 2prm 12615 3prm 12616 1arith 12856 setsslnid 13050 xpsff1o 13348 isabli 13803 rngmgpf 13866 mgpf 13940 zringnzr 14531 fntopon 14663 istpsi 14678 ismeti 14985 cnfldms 15175 tgqioo 15194 addcncntoplem 15200 divcnap 15204 abscncf 15224 recncf 15225 imcncf 15226 cjcncf 15227 maxcncf 15254 mincncf 15255 dveflem 15365 reeff1o 15412 reefiso 15416 ioocosf1o 15493 lgslem2 15645 lgsfcl2 15650 lgsne0 15682 2lgslem1b 15733 umgrbien 15875 ex-fl 15999 bj-indint 16204 bj-omord 16233 012of 16268 2o01f 16269 0nninf 16281 peano4nninf 16283 taupi 16352 |
| Copyright terms: Public domain | W3C validator |