| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir2an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mpbir2an.1 | ⊢ 𝜓 |
| mpbir2an.2 | ⊢ 𝜒 |
| mpbiran2an.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| mpbir2an | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir2an.2 | . 2 ⊢ 𝜒 | |
| 2 | mpbir2an.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpbiran2an.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 4 | 2, 3 | mpbiran 943 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 5 | 1, 4 | mpbir 146 | 1 ⊢ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3pm3.2i 1178 euequ1 2150 eqssi 3210 elini 3358 dtruarb 4239 opnzi 4283 so0 4377 we0 4412 ord0 4442 ordon 4538 onsucelsucexmidlem1 4580 regexmidlemm 4584 ordpwsucexmid 4622 reg3exmidlemwe 4631 ordom 4659 funi 5308 funcnvsn 5324 funinsn 5328 fnresi 5399 fn0 5401 f0 5473 fconst 5478 f10 5563 f1o0 5566 f1oi 5567 f1osn 5569 funopsn 5769 isoid 5886 iso0 5893 acexmidlem2 5948 fo1st 6250 fo2nd 6251 iordsmo 6390 tfrlem7 6410 tfrexlem 6427 mapsnf1o2 6790 1domsn 6921 inresflem 7169 0ct 7216 infnninf 7233 infnninfOLD 7234 exmidonfinlem 7308 exmidaclem 7327 pw1on 7345 sucpw1nel3 7352 1pi 7435 prarloclemcalc 7622 ltsopr 7716 ltsosr 7884 cnm 7952 axicn 7983 axaddf 7988 axmulf 7989 nnindnn 8013 mpomulf 8069 ltso 8157 negiso 9035 nnind 9059 0z 9390 dfuzi 9490 cnref1o 9779 elrpii 9785 xrltso 9925 0e0icopnf 10108 0e0iccpnf 10109 fz0to4untppr 10253 fldiv4p1lem1div2 10455 expcl2lemap 10703 expclzaplem 10715 expge0 10727 expge1 10728 xrnegiso 11617 fclim 11649 eff2 12035 reeff1 12055 ef01bndlem 12111 sin01bnd 12112 cos01bnd 12113 sin01gt0 12117 egt2lt3 12135 halfleoddlt 12249 2prm 12493 3prm 12494 1arith 12734 setsslnid 12928 xpsff1o 13225 isabli 13680 rngmgpf 13743 mgpf 13817 zringnzr 14408 fntopon 14540 istpsi 14555 ismeti 14862 cnfldms 15052 tgqioo 15071 addcncntoplem 15077 divcnap 15081 abscncf 15101 recncf 15102 imcncf 15103 cjcncf 15104 maxcncf 15131 mincncf 15132 dveflem 15242 reeff1o 15289 reefiso 15293 ioocosf1o 15370 lgslem2 15522 lgsfcl2 15527 lgsne0 15559 2lgslem1b 15610 ex-fl 15735 bj-indint 15941 bj-omord 15970 012of 16004 2o01f 16005 0nninf 16015 peano4nninf 16017 taupi 16086 |
| Copyright terms: Public domain | W3C validator |