ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuni GIF version

Theorem pwuni 4222
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
pwuni 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem pwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elssuni 3864 . . 3 (𝑥𝐴𝑥 𝐴)
2 vex 2763 . . . 4 𝑥 ∈ V
32elpw 3608 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
41, 3sylibr 134 . 2 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
54ssriv 3184 1 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2164  wss 3154  𝒫 cpw 3602   cuni 3836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3160  df-ss 3167  df-pw 3604  df-uni 3837
This theorem is referenced by:  uniexb  4505  2pwuninelg  6338  istopon  14192  eltg3i  14235  mopnfss  14626
  Copyright terms: Public domain W3C validator