ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwuni GIF version

Theorem pwuni 4194
Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.)
Assertion
Ref Expression
pwuni 𝐴 ⊆ 𝒫 𝐴

Proof of Theorem pwuni
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elssuni 3839 . . 3 (𝑥𝐴𝑥 𝐴)
2 vex 2742 . . . 4 𝑥 ∈ V
32elpw 3583 . . 3 (𝑥 ∈ 𝒫 𝐴𝑥 𝐴)
41, 3sylibr 134 . 2 (𝑥𝐴𝑥 ∈ 𝒫 𝐴)
54ssriv 3161 1 𝐴 ⊆ 𝒫 𝐴
Colors of variables: wff set class
Syntax hints:  wcel 2148  wss 3131  𝒫 cpw 3577   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-uni 3812
This theorem is referenced by:  uniexb  4475  2pwuninelg  6286  istopon  13598  eltg3i  13641  mopnfss  14032
  Copyright terms: Public domain W3C validator