| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwuni | GIF version | ||
| Description: A class is a subclass of the power class of its union. Exercise 6(b) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) |
| Ref | Expression |
|---|---|
| pwuni | ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 3895 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ⊆ ∪ 𝐴) | |
| 2 | vex 2782 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpw 3635 | . . 3 ⊢ (𝑥 ∈ 𝒫 ∪ 𝐴 ↔ 𝑥 ⊆ ∪ 𝐴) |
| 4 | 1, 3 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝒫 ∪ 𝐴) |
| 5 | 4 | ssriv 3208 | 1 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 ⊆ wss 3177 𝒫 cpw 3629 ∪ cuni 3867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-v 2781 df-in 3183 df-ss 3190 df-pw 3631 df-uni 3868 |
| This theorem is referenced by: uniexb 4541 2pwuninelg 6399 istopon 14652 eltg3i 14695 mopnfss 15086 |
| Copyright terms: Public domain | W3C validator |