| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord3ex | GIF version | ||
| Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| ord3ex | ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3640 | . 2 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
| 2 | pp0ex 4232 | . . . . 5 ⊢ {∅, {∅}} ∈ V | |
| 3 | 2 | pwex 4226 | . . . 4 ⊢ 𝒫 {∅, {∅}} ∈ V |
| 4 | pwprss 3845 | . . . 4 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}} | |
| 5 | 3, 4 | ssexi 4181 | . . 3 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V |
| 6 | snsspr2 3781 | . . . 4 ⊢ {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} | |
| 7 | unss2 3343 | . . . 4 ⊢ ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
| 9 | 5, 8 | ssexi 4181 | . 2 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V |
| 10 | 1, 9 | eqeltri 2277 | 1 ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 Vcvv 2771 ∪ cun 3163 ⊆ wss 3165 ∅c0 3459 𝒫 cpw 3615 {csn 3632 {cpr 3633 {ctp 3634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |