ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord3ex GIF version

Theorem ord3ex 4242
Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
ord3ex {∅, {∅}, {∅, {∅}}} ∈ V

Proof of Theorem ord3ex
StepHypRef Expression
1 df-tp 3646 . 2 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
2 pp0ex 4241 . . . . 5 {∅, {∅}} ∈ V
32pwex 4235 . . . 4 𝒫 {∅, {∅}} ∈ V
4 pwprss 3852 . . . 4 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}
53, 4ssexi 4190 . . 3 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V
6 snsspr2 3788 . . . 4 {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}}
7 unss2 3348 . . . 4 ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}))
86, 7ax-mp 5 . . 3 ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
95, 8ssexi 4190 . 2 ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V
101, 9eqeltri 2279 1 {∅, {∅}, {∅, {∅}}} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  cun 3168  wss 3170  c0 3464  𝒫 cpw 3621  {csn 3638  {cpr 3639  {ctp 3640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator