![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ord3ex | GIF version |
Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
ord3ex | ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3626 | . 2 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
2 | pp0ex 4218 | . . . . 5 ⊢ {∅, {∅}} ∈ V | |
3 | 2 | pwex 4212 | . . . 4 ⊢ 𝒫 {∅, {∅}} ∈ V |
4 | pwprss 3831 | . . . 4 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}} | |
5 | 3, 4 | ssexi 4167 | . . 3 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V |
6 | snsspr2 3767 | . . . 4 ⊢ {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} | |
7 | unss2 3330 | . . . 4 ⊢ ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
9 | 5, 8 | ssexi 4167 | . 2 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V |
10 | 1, 9 | eqeltri 2266 | 1 ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ∪ cun 3151 ⊆ wss 3153 ∅c0 3446 𝒫 cpw 3601 {csn 3618 {cpr 3619 {ctp 3620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |