Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ord3ex | GIF version |
Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.) |
Ref | Expression |
---|---|
ord3ex | ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3584 | . 2 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
2 | pp0ex 4168 | . . . . 5 ⊢ {∅, {∅}} ∈ V | |
3 | 2 | pwex 4162 | . . . 4 ⊢ 𝒫 {∅, {∅}} ∈ V |
4 | pwprss 3785 | . . . 4 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}} | |
5 | 3, 4 | ssexi 4120 | . . 3 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V |
6 | snsspr2 3722 | . . . 4 ⊢ {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} | |
7 | unss2 3293 | . . . 4 ⊢ ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
9 | 5, 8 | ssexi 4120 | . 2 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V |
10 | 1, 9 | eqeltri 2239 | 1 ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 Vcvv 2726 ∪ cun 3114 ⊆ wss 3116 ∅c0 3409 𝒫 cpw 3559 {csn 3576 {cpr 3577 {ctp 3578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-tp 3584 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |