| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord3ex | GIF version | ||
| Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.) |
| Ref | Expression |
|---|---|
| ord3ex | ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3674 | . 2 ⊢ {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}}) | |
| 2 | pp0ex 4272 | . . . . 5 ⊢ {∅, {∅}} ∈ V | |
| 3 | 2 | pwex 4266 | . . . 4 ⊢ 𝒫 {∅, {∅}} ∈ V |
| 4 | pwprss 3883 | . . . 4 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}} | |
| 5 | 3, 4 | ssexi 4221 | . . 3 ⊢ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V |
| 6 | snsspr2 3816 | . . . 4 ⊢ {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} | |
| 7 | unss2 3375 | . . . 4 ⊢ ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) |
| 9 | 5, 8 | ssexi 4221 | . 2 ⊢ ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V |
| 10 | 1, 9 | eqeltri 2302 | 1 ⊢ {∅, {∅}, {∅, {∅}}} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ⊆ wss 3197 ∅c0 3491 𝒫 cpw 3649 {csn 3666 {cpr 3667 {ctp 3668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |