ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ord3ex GIF version

Theorem ord3ex 4223
Description: The ordinal number 3 is a set, proved without the Axiom of Union. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
ord3ex {∅, {∅}, {∅, {∅}}} ∈ V

Proof of Theorem ord3ex
StepHypRef Expression
1 df-tp 3630 . 2 {∅, {∅}, {∅, {∅}}} = ({∅, {∅}} ∪ {{∅, {∅}}})
2 pp0ex 4222 . . . . 5 {∅, {∅}} ∈ V
32pwex 4216 . . . 4 𝒫 {∅, {∅}} ∈ V
4 pwprss 3835 . . . 4 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ⊆ 𝒫 {∅, {∅}}
53, 4ssexi 4171 . . 3 ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) ∈ V
6 snsspr2 3771 . . . 4 {{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}}
7 unss2 3334 . . . 4 ({{∅, {∅}}} ⊆ {{{∅}}, {∅, {∅}}} → ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}))
86, 7ax-mp 5 . . 3 ({∅, {∅}} ∪ {{∅, {∅}}}) ⊆ ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}})
95, 8ssexi 4171 . 2 ({∅, {∅}} ∪ {{∅, {∅}}}) ∈ V
101, 9eqeltri 2269 1 {∅, {∅}, {∅, {∅}}} ∈ V
Colors of variables: wff set class
Syntax hints:  wcel 2167  Vcvv 2763  cun 3155  wss 3157  c0 3450  𝒫 cpw 3605  {csn 3622  {cpr 3623  {ctp 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator