Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylibd | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylibd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
sylibd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylibd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 2 | biimpd 143 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3d 201 dvelimdf 2009 ceqsalt 2756 sbceqal 3010 csbiebt 3088 rspcsbela 3108 preqr1g 3753 repizf2 4148 copsexg 4229 onun2 4474 suc11g 4541 elrnrexdm 5635 isoselem 5799 riotass2 5835 oawordriexmid 6449 nnm00 6509 ecopovtrn 6610 ecopovtrng 6613 infglbti 7002 difinfsnlem 7076 enq0tr 7396 addnqprl 7491 addnqpru 7492 mulnqprl 7530 mulnqpru 7531 recexprlemss1l 7597 recexprlemss1u 7598 cauappcvgprlemdisj 7613 mulextsr1lem 7742 pitonn 7810 rereceu 7851 cnegexlem1 8094 ltadd2 8338 eqord2 8403 mulext 8533 mulgt1 8779 lt2halves 9113 addltmul 9114 nzadd 9264 ltsubnn0 9279 zextlt 9304 recnz 9305 zeo 9317 peano5uzti 9320 irradd 9605 irrmul 9606 xltneg 9793 xleadd1 9832 icc0r 9883 fznuz 10058 uznfz 10059 facndiv 10673 rennim 10966 abs00ap 11026 absle 11053 cau3lem 11078 caubnd2 11081 climshft 11267 subcn2 11274 mulcn2 11275 serf0 11315 cvgratnnlemnexp 11487 cvgratnnlemmn 11488 efieq1re 11734 moddvds 11761 dvdsssfz1 11812 nn0seqcvgd 11995 algcvgblem 12003 eucalglt 12011 lcmgcdlem 12031 rpmul 12052 divgcdcoprm0 12055 isprm6 12101 rpexp 12107 eulerthlema 12184 eulerthlemh 12185 prmdiv 12189 pcprendvds2 12245 pcz 12285 pcprmpw 12287 pcfac 12302 expnprm 12305 tgss3 12872 cnpnei 13013 cnntr 13019 hmeoopn 13105 hmeocld 13106 mulcncflem 13384 sincosq3sgn 13543 sincosq4sgn 13544 lgsdir2lem4 13726 lgsne0 13733 2sqlem8a 13752 bj-peano4 13990 iswomni0 14083 |
Copyright terms: Public domain | W3C validator |