Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sylibd | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylibd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
sylibd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylibd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 2 | biimpd 143 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3imtr3d 201 dvelimdf 2004 ceqsalt 2751 sbceqal 3005 csbiebt 3083 rspcsbela 3103 preqr1g 3745 repizf2 4140 copsexg 4221 onun2 4466 suc11g 4533 elrnrexdm 5623 isoselem 5787 riotass2 5823 oawordriexmid 6434 nnm00 6493 ecopovtrn 6594 ecopovtrng 6597 infglbti 6986 difinfsnlem 7060 enq0tr 7371 addnqprl 7466 addnqpru 7467 mulnqprl 7505 mulnqpru 7506 recexprlemss1l 7572 recexprlemss1u 7573 cauappcvgprlemdisj 7588 mulextsr1lem 7717 pitonn 7785 rereceu 7826 cnegexlem1 8069 ltadd2 8313 eqord2 8378 mulext 8508 mulgt1 8754 lt2halves 9088 addltmul 9089 nzadd 9239 ltsubnn0 9254 zextlt 9279 recnz 9280 zeo 9292 peano5uzti 9295 irradd 9580 irrmul 9581 xltneg 9768 xleadd1 9807 icc0r 9858 fznuz 10033 uznfz 10034 facndiv 10648 rennim 10940 abs00ap 11000 absle 11027 cau3lem 11052 caubnd2 11055 climshft 11241 subcn2 11248 mulcn2 11249 serf0 11289 cvgratnnlemnexp 11461 cvgratnnlemmn 11462 efieq1re 11708 moddvds 11735 dvdsssfz1 11786 nn0seqcvgd 11969 algcvgblem 11977 eucalglt 11985 lcmgcdlem 12005 rpmul 12026 divgcdcoprm0 12029 isprm6 12075 rpexp 12081 eulerthlema 12158 eulerthlemh 12159 prmdiv 12163 pcprendvds2 12219 pcz 12259 pcprmpw 12261 pcfac 12276 expnprm 12279 tgss3 12678 cnpnei 12819 cnntr 12825 hmeoopn 12911 hmeocld 12912 mulcncflem 13190 sincosq3sgn 13349 sincosq4sgn 13350 lgsdir2lem4 13532 lgsne0 13539 2sqlem8a 13558 bj-peano4 13797 iswomni0 13890 |
Copyright terms: Public domain | W3C validator |