| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| sylibd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2047 ceqsalt 2806 sbceqal 3064 csbiebt 3144 rspcsbela 3164 preqr1g 3823 repizf2 4225 copsexg 4309 onun2 4559 suc11g 4626 elrnrexdm 5747 isoselem 5917 riotass2 5956 oawordriexmid 6586 nnm00 6646 ecopovtrn 6749 ecopovtrng 6752 infglbti 7160 difinfsnlem 7234 enq0tr 7589 addnqprl 7684 addnqpru 7685 mulnqprl 7723 mulnqpru 7724 recexprlemss1l 7790 recexprlemss1u 7791 cauappcvgprlemdisj 7806 mulextsr1lem 7935 pitonn 8003 rereceu 8044 cnegexlem1 8289 ltadd2 8534 eqord2 8599 mulext 8729 mulgt1 8978 lt2halves 9315 addltmul 9316 nzadd 9467 ltsubnn0 9482 zextlt 9507 recnz 9508 zeo 9520 peano5uzti 9523 irradd 9809 irrmul 9810 xltneg 10000 xleadd1 10039 icc0r 10090 fznuz 10266 uznfz 10267 facndiv 10928 swrdccatin2 11227 swrdccatin2d 11242 rennim 11479 abs00ap 11539 absle 11566 cau3lem 11591 caubnd2 11594 climshft 11781 subcn2 11788 mulcn2 11789 serf0 11829 cvgratnnlemnexp 12001 cvgratnnlemmn 12002 efieq1re 12249 moddvds 12276 dvdsssfz1 12329 nn0seqcvgd 12529 algcvgblem 12537 eucalglt 12545 lcmgcdlem 12565 rpmul 12586 divgcdcoprm0 12589 isprm6 12635 rpexp 12641 eulerthlema 12718 eulerthlemh 12719 prmdiv 12723 pcprendvds2 12780 pcz 12821 pcprmpw 12823 pcadd2 12830 pcfac 12839 expnprm 12842 imasgrp2 13613 issubg4m 13696 znidomb 14587 tgss3 14717 cnpnei 14858 cnntr 14864 hmeoopn 14950 hmeocld 14951 mulcncflem 15246 plycolemc 15397 sincosq3sgn 15467 sincosq4sgn 15468 perfect1 15637 lgsdir2lem4 15675 lgsne0 15682 lgsquad2lem2 15726 2sqlem8a 15766 bj-peano4 16228 iswomni0 16330 |
| Copyright terms: Public domain | W3C validator |