![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylibd | GIF version |
Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
sylibd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylibd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
Ref | Expression |
---|---|
sylibd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylibd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
3 | 2 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3d 202 dvelimdf 2032 ceqsalt 2786 sbceqal 3042 csbiebt 3121 rspcsbela 3141 preqr1g 3793 repizf2 4192 copsexg 4274 onun2 4523 suc11g 4590 elrnrexdm 5698 isoselem 5864 riotass2 5901 oawordriexmid 6525 nnm00 6585 ecopovtrn 6688 ecopovtrng 6691 infglbti 7086 difinfsnlem 7160 enq0tr 7496 addnqprl 7591 addnqpru 7592 mulnqprl 7630 mulnqpru 7631 recexprlemss1l 7697 recexprlemss1u 7698 cauappcvgprlemdisj 7713 mulextsr1lem 7842 pitonn 7910 rereceu 7951 cnegexlem1 8196 ltadd2 8440 eqord2 8505 mulext 8635 mulgt1 8884 lt2halves 9221 addltmul 9222 nzadd 9372 ltsubnn0 9387 zextlt 9412 recnz 9413 zeo 9425 peano5uzti 9428 irradd 9714 irrmul 9715 xltneg 9905 xleadd1 9944 icc0r 9995 fznuz 10171 uznfz 10172 facndiv 10813 rennim 11149 abs00ap 11209 absle 11236 cau3lem 11261 caubnd2 11264 climshft 11450 subcn2 11457 mulcn2 11458 serf0 11498 cvgratnnlemnexp 11670 cvgratnnlemmn 11671 efieq1re 11918 moddvds 11945 dvdsssfz1 11997 nn0seqcvgd 12182 algcvgblem 12190 eucalglt 12198 lcmgcdlem 12218 rpmul 12239 divgcdcoprm0 12242 isprm6 12288 rpexp 12294 eulerthlema 12371 eulerthlemh 12372 prmdiv 12376 pcprendvds2 12432 pcz 12473 pcprmpw 12475 pcadd2 12482 pcfac 12491 expnprm 12494 imasgrp2 13183 issubg4m 13266 znidomb 14157 tgss3 14257 cnpnei 14398 cnntr 14404 hmeoopn 14490 hmeocld 14491 mulcncflem 14786 plycolemc 14936 sincosq3sgn 15004 sincosq4sgn 15005 lgsdir2lem4 15188 lgsne0 15195 lgsquad2lem2 15239 2sqlem8a 15279 bj-peano4 15517 iswomni0 15611 |
Copyright terms: Public domain | W3C validator |