| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| sylibd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2067 ceqsalt 2826 sbceqal 3084 csbiebt 3164 rspcsbela 3184 preqr1g 3844 repizf2 4246 copsexg 4330 onun2 4582 suc11g 4649 elrnrexdm 5776 isoselem 5950 riotass2 5989 oawordriexmid 6624 nnm00 6684 ecopovtrn 6787 ecopovtrng 6790 infglbti 7200 difinfsnlem 7274 enq0tr 7629 addnqprl 7724 addnqpru 7725 mulnqprl 7763 mulnqpru 7764 recexprlemss1l 7830 recexprlemss1u 7831 cauappcvgprlemdisj 7846 mulextsr1lem 7975 pitonn 8043 rereceu 8084 cnegexlem1 8329 ltadd2 8574 eqord2 8639 mulext 8769 mulgt1 9018 lt2halves 9355 addltmul 9356 nzadd 9507 ltsubnn0 9522 zextlt 9547 recnz 9548 zeo 9560 peano5uzti 9563 irradd 9849 irrmul 9850 xltneg 10040 xleadd1 10079 icc0r 10130 fznuz 10306 uznfz 10307 facndiv 10969 swrdccatin2 11269 swrdccatin2d 11284 rennim 11521 abs00ap 11581 absle 11608 cau3lem 11633 caubnd2 11636 climshft 11823 subcn2 11830 mulcn2 11831 serf0 11871 cvgratnnlemnexp 12043 cvgratnnlemmn 12044 efieq1re 12291 moddvds 12318 dvdsssfz1 12371 nn0seqcvgd 12571 algcvgblem 12579 eucalglt 12587 lcmgcdlem 12607 rpmul 12628 divgcdcoprm0 12631 isprm6 12677 rpexp 12683 eulerthlema 12760 eulerthlemh 12761 prmdiv 12765 pcprendvds2 12822 pcz 12863 pcprmpw 12865 pcadd2 12872 pcfac 12881 expnprm 12884 imasgrp2 13655 issubg4m 13738 znidomb 14630 tgss3 14760 cnpnei 14901 cnntr 14907 hmeoopn 14993 hmeocld 14994 mulcncflem 15289 plycolemc 15440 sincosq3sgn 15510 sincosq4sgn 15511 perfect1 15680 lgsdir2lem4 15718 lgsne0 15725 lgsquad2lem2 15769 2sqlem8a 15809 bj-peano4 16342 iswomni0 16449 |
| Copyright terms: Public domain | W3C validator |