| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| sylibd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2035 ceqsalt 2789 sbceqal 3045 csbiebt 3124 rspcsbela 3144 preqr1g 3797 repizf2 4196 copsexg 4278 onun2 4527 suc11g 4594 elrnrexdm 5702 isoselem 5868 riotass2 5905 oawordriexmid 6530 nnm00 6590 ecopovtrn 6693 ecopovtrng 6696 infglbti 7093 difinfsnlem 7167 enq0tr 7504 addnqprl 7599 addnqpru 7600 mulnqprl 7638 mulnqpru 7639 recexprlemss1l 7705 recexprlemss1u 7706 cauappcvgprlemdisj 7721 mulextsr1lem 7850 pitonn 7918 rereceu 7959 cnegexlem1 8204 ltadd2 8449 eqord2 8514 mulext 8644 mulgt1 8893 lt2halves 9230 addltmul 9231 nzadd 9381 ltsubnn0 9396 zextlt 9421 recnz 9422 zeo 9434 peano5uzti 9437 irradd 9723 irrmul 9724 xltneg 9914 xleadd1 9953 icc0r 10004 fznuz 10180 uznfz 10181 facndiv 10834 rennim 11170 abs00ap 11230 absle 11257 cau3lem 11282 caubnd2 11285 climshft 11472 subcn2 11479 mulcn2 11480 serf0 11520 cvgratnnlemnexp 11692 cvgratnnlemmn 11693 efieq1re 11940 moddvds 11967 dvdsssfz1 12020 nn0seqcvgd 12220 algcvgblem 12228 eucalglt 12236 lcmgcdlem 12256 rpmul 12277 divgcdcoprm0 12280 isprm6 12326 rpexp 12332 eulerthlema 12409 eulerthlemh 12410 prmdiv 12414 pcprendvds2 12471 pcz 12512 pcprmpw 12514 pcadd2 12521 pcfac 12530 expnprm 12533 imasgrp2 13266 issubg4m 13349 znidomb 14240 tgss3 14340 cnpnei 14481 cnntr 14487 hmeoopn 14573 hmeocld 14574 mulcncflem 14869 plycolemc 15020 sincosq3sgn 15090 sincosq4sgn 15091 perfect1 15260 lgsdir2lem4 15298 lgsne0 15305 lgsquad2lem2 15349 2sqlem8a 15389 bj-peano4 15627 iswomni0 15722 |
| Copyright terms: Public domain | W3C validator |