| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| sylibd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2035 ceqsalt 2789 sbceqal 3045 csbiebt 3124 rspcsbela 3144 preqr1g 3797 repizf2 4196 copsexg 4278 onun2 4527 suc11g 4594 elrnrexdm 5704 isoselem 5870 riotass2 5907 oawordriexmid 6537 nnm00 6597 ecopovtrn 6700 ecopovtrng 6703 infglbti 7100 difinfsnlem 7174 enq0tr 7520 addnqprl 7615 addnqpru 7616 mulnqprl 7654 mulnqpru 7655 recexprlemss1l 7721 recexprlemss1u 7722 cauappcvgprlemdisj 7737 mulextsr1lem 7866 pitonn 7934 rereceu 7975 cnegexlem1 8220 ltadd2 8465 eqord2 8530 mulext 8660 mulgt1 8909 lt2halves 9246 addltmul 9247 nzadd 9397 ltsubnn0 9412 zextlt 9437 recnz 9438 zeo 9450 peano5uzti 9453 irradd 9739 irrmul 9740 xltneg 9930 xleadd1 9969 icc0r 10020 fznuz 10196 uznfz 10197 facndiv 10850 rennim 11186 abs00ap 11246 absle 11273 cau3lem 11298 caubnd2 11301 climshft 11488 subcn2 11495 mulcn2 11496 serf0 11536 cvgratnnlemnexp 11708 cvgratnnlemmn 11709 efieq1re 11956 moddvds 11983 dvdsssfz1 12036 nn0seqcvgd 12236 algcvgblem 12244 eucalglt 12252 lcmgcdlem 12272 rpmul 12293 divgcdcoprm0 12296 isprm6 12342 rpexp 12348 eulerthlema 12425 eulerthlemh 12426 prmdiv 12430 pcprendvds2 12487 pcz 12528 pcprmpw 12530 pcadd2 12537 pcfac 12546 expnprm 12549 imasgrp2 13318 issubg4m 13401 znidomb 14292 tgss3 14400 cnpnei 14541 cnntr 14547 hmeoopn 14633 hmeocld 14634 mulcncflem 14929 plycolemc 15080 sincosq3sgn 15150 sincosq4sgn 15151 perfect1 15320 lgsdir2lem4 15358 lgsne0 15365 lgsquad2lem2 15409 2sqlem8a 15449 bj-peano4 15687 iswomni0 15786 |
| Copyright terms: Public domain | W3C validator |