| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sylibd | GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| sylibd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylibd.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| sylibd | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylibd.2 | . . 3 ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | |
| 3 | 2 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜒 → 𝜃)) |
| 4 | 1, 3 | syld 45 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3d 202 dvelimdf 2045 ceqsalt 2799 sbceqal 3055 csbiebt 3134 rspcsbela 3154 preqr1g 3809 repizf2 4210 copsexg 4292 onun2 4542 suc11g 4609 elrnrexdm 5726 isoselem 5896 riotass2 5933 oawordriexmid 6563 nnm00 6623 ecopovtrn 6726 ecopovtrng 6729 infglbti 7134 difinfsnlem 7208 enq0tr 7554 addnqprl 7649 addnqpru 7650 mulnqprl 7688 mulnqpru 7689 recexprlemss1l 7755 recexprlemss1u 7756 cauappcvgprlemdisj 7771 mulextsr1lem 7900 pitonn 7968 rereceu 8009 cnegexlem1 8254 ltadd2 8499 eqord2 8564 mulext 8694 mulgt1 8943 lt2halves 9280 addltmul 9281 nzadd 9432 ltsubnn0 9447 zextlt 9472 recnz 9473 zeo 9485 peano5uzti 9488 irradd 9774 irrmul 9775 xltneg 9965 xleadd1 10004 icc0r 10055 fznuz 10231 uznfz 10232 facndiv 10891 rennim 11357 abs00ap 11417 absle 11444 cau3lem 11469 caubnd2 11472 climshft 11659 subcn2 11666 mulcn2 11667 serf0 11707 cvgratnnlemnexp 11879 cvgratnnlemmn 11880 efieq1re 12127 moddvds 12154 dvdsssfz1 12207 nn0seqcvgd 12407 algcvgblem 12415 eucalglt 12423 lcmgcdlem 12443 rpmul 12464 divgcdcoprm0 12467 isprm6 12513 rpexp 12519 eulerthlema 12596 eulerthlemh 12597 prmdiv 12601 pcprendvds2 12658 pcz 12699 pcprmpw 12701 pcadd2 12708 pcfac 12717 expnprm 12720 imasgrp2 13490 issubg4m 13573 znidomb 14464 tgss3 14594 cnpnei 14735 cnntr 14741 hmeoopn 14827 hmeocld 14828 mulcncflem 15123 plycolemc 15274 sincosq3sgn 15344 sincosq4sgn 15345 perfect1 15514 lgsdir2lem4 15552 lgsne0 15559 lgsquad2lem2 15603 2sqlem8a 15643 bj-peano4 15965 iswomni0 16064 |
| Copyright terms: Public domain | W3C validator |