ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ectocld GIF version

Theorem ectocld 6603
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1 𝑆 = (𝐵 / 𝑅)
ectocl.2 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
ectocld.3 ((𝜒𝑥𝐵) → 𝜑)
Assertion
Ref Expression
ectocld ((𝜒𝐴𝑆) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)

Proof of Theorem ectocld
StepHypRef Expression
1 elqsi 6589 . . . 4 (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
2 ectocl.1 . . . 4 𝑆 = (𝐵 / 𝑅)
31, 2eleq2s 2272 . . 3 (𝐴𝑆 → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
4 ectocld.3 . . . . 5 ((𝜒𝑥𝐵) → 𝜑)
5 ectocl.2 . . . . . 6 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
65eqcoms 2180 . . . . 5 (𝐴 = [𝑥]𝑅 → (𝜑𝜓))
74, 6syl5ibcom 155 . . . 4 ((𝜒𝑥𝐵) → (𝐴 = [𝑥]𝑅𝜓))
87rexlimdva 2594 . . 3 (𝜒 → (∃𝑥𝐵 𝐴 = [𝑥]𝑅𝜓))
93, 8syl5 32 . 2 (𝜒 → (𝐴𝑆𝜓))
109imp 124 1 ((𝜒𝐴𝑆) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wrex 2456  [cec 6535   / cqs 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-qs 6543
This theorem is referenced by:  ectocl  6604  elqsn0m  6605  qsel  6614  eqgen  13091
  Copyright terms: Public domain W3C validator