ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ectocld GIF version

Theorem ectocld 6660
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ectocl.1 𝑆 = (𝐵 / 𝑅)
ectocl.2 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
ectocld.3 ((𝜒𝑥𝐵) → 𝜑)
Assertion
Ref Expression
ectocld ((𝜒𝐴𝑆) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝜓,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)

Proof of Theorem ectocld
StepHypRef Expression
1 elqsi 6646 . . . 4 (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
2 ectocl.1 . . . 4 𝑆 = (𝐵 / 𝑅)
31, 2eleq2s 2291 . . 3 (𝐴𝑆 → ∃𝑥𝐵 𝐴 = [𝑥]𝑅)
4 ectocld.3 . . . . 5 ((𝜒𝑥𝐵) → 𝜑)
5 ectocl.2 . . . . . 6 ([𝑥]𝑅 = 𝐴 → (𝜑𝜓))
65eqcoms 2199 . . . . 5 (𝐴 = [𝑥]𝑅 → (𝜑𝜓))
74, 6syl5ibcom 155 . . . 4 ((𝜒𝑥𝐵) → (𝐴 = [𝑥]𝑅𝜓))
87rexlimdva 2614 . . 3 (𝜒 → (∃𝑥𝐵 𝐴 = [𝑥]𝑅𝜓))
93, 8syl5 32 . 2 (𝜒 → (𝐴𝑆𝜓))
109imp 124 1 ((𝜒𝐴𝑆) → 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wrex 2476  [cec 6590   / cqs 6591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-qs 6598
This theorem is referenced by:  ectocl  6661  elqsn0m  6662  qsel  6671  eqgen  13357  quscrng  14089
  Copyright terms: Public domain W3C validator