| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ectocld | GIF version | ||
| Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
| ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ectocld.3 | ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
| Ref | Expression |
|---|---|
| ectocld | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6646 | . . . 4 ⊢ (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) | |
| 2 | ectocl.1 | . . . 4 ⊢ 𝑆 = (𝐵 / 𝑅) | |
| 3 | 1, 2 | eleq2s 2291 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) |
| 4 | ectocld.3 | . . . . 5 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) | |
| 5 | ectocl.2 | . . . . . 6 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | eqcoms 2199 | . . . . 5 ⊢ (𝐴 = [𝑥]𝑅 → (𝜑 ↔ 𝜓)) |
| 7 | 4, 6 | syl5ibcom 155 | . . . 4 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → (𝐴 = [𝑥]𝑅 → 𝜓)) |
| 8 | 7 | rexlimdva 2614 | . . 3 ⊢ (𝜒 → (∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅 → 𝜓)) |
| 9 | 3, 8 | syl5 32 | . 2 ⊢ (𝜒 → (𝐴 ∈ 𝑆 → 𝜓)) |
| 10 | 9 | imp 124 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∃wrex 2476 [cec 6590 / cqs 6591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-qs 6598 |
| This theorem is referenced by: ectocl 6661 elqsn0m 6662 qsel 6671 eqgen 13357 quscrng 14089 |
| Copyright terms: Public domain | W3C validator |