Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ectocld | GIF version |
Description: Implicit substitution of class for equivalence class. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ectocl.1 | ⊢ 𝑆 = (𝐵 / 𝑅) |
ectocl.2 | ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) |
ectocld.3 | ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
ectocld | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsi 6577 | . . . 4 ⊢ (𝐴 ∈ (𝐵 / 𝑅) → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) | |
2 | ectocl.1 | . . . 4 ⊢ 𝑆 = (𝐵 / 𝑅) | |
3 | 1, 2 | eleq2s 2270 | . . 3 ⊢ (𝐴 ∈ 𝑆 → ∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅) |
4 | ectocld.3 | . . . . 5 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → 𝜑) | |
5 | ectocl.2 | . . . . . 6 ⊢ ([𝑥]𝑅 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 5 | eqcoms 2178 | . . . . 5 ⊢ (𝐴 = [𝑥]𝑅 → (𝜑 ↔ 𝜓)) |
7 | 4, 6 | syl5ibcom 155 | . . . 4 ⊢ ((𝜒 ∧ 𝑥 ∈ 𝐵) → (𝐴 = [𝑥]𝑅 → 𝜓)) |
8 | 7 | rexlimdva 2592 | . . 3 ⊢ (𝜒 → (∃𝑥 ∈ 𝐵 𝐴 = [𝑥]𝑅 → 𝜓)) |
9 | 3, 8 | syl5 32 | . 2 ⊢ (𝜒 → (𝐴 ∈ 𝑆 → 𝜓)) |
10 | 9 | imp 124 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑆) → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∃wrex 2454 [cec 6523 / cqs 6524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-qs 6531 |
This theorem is referenced by: ectocl 6592 elqsn0m 6593 qsel 6602 |
Copyright terms: Public domain | W3C validator |