Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elqsn0m | GIF version |
Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.) |
Ref | Expression |
---|---|
elqsn0m | ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2170 | . 2 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
2 | eleq2 2234 | . . 3 ⊢ ([𝑦]𝑅 = 𝐵 → (𝑥 ∈ [𝑦]𝑅 ↔ 𝑥 ∈ 𝐵)) | |
3 | 2 | exbidv 1818 | . 2 ⊢ ([𝑦]𝑅 = 𝐵 → (∃𝑥 𝑥 ∈ [𝑦]𝑅 ↔ ∃𝑥 𝑥 ∈ 𝐵)) |
4 | eleq2 2234 | . . . 4 ⊢ (dom 𝑅 = 𝐴 → (𝑦 ∈ dom 𝑅 ↔ 𝑦 ∈ 𝐴)) | |
5 | 4 | biimpar 295 | . . 3 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ dom 𝑅) |
6 | ecdmn0m 6555 | . . 3 ⊢ (𝑦 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝑦]𝑅) | |
7 | 5, 6 | sylib 121 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑦 ∈ 𝐴) → ∃𝑥 𝑥 ∈ [𝑦]𝑅) |
8 | 1, 3, 7 | ectocld 6579 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∃wex 1485 ∈ wcel 2141 dom cdm 4611 [cec 6511 / cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-ec 6515 df-qs 6519 |
This theorem is referenced by: elqsn0 6582 ecelqsdm 6583 |
Copyright terms: Public domain | W3C validator |