Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elqsn0m | GIF version |
Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.) |
Ref | Expression |
---|---|
elqsn0m | ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2175 | . 2 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
2 | eleq2 2239 | . . 3 ⊢ ([𝑦]𝑅 = 𝐵 → (𝑥 ∈ [𝑦]𝑅 ↔ 𝑥 ∈ 𝐵)) | |
3 | 2 | exbidv 1823 | . 2 ⊢ ([𝑦]𝑅 = 𝐵 → (∃𝑥 𝑥 ∈ [𝑦]𝑅 ↔ ∃𝑥 𝑥 ∈ 𝐵)) |
4 | eleq2 2239 | . . . 4 ⊢ (dom 𝑅 = 𝐴 → (𝑦 ∈ dom 𝑅 ↔ 𝑦 ∈ 𝐴)) | |
5 | 4 | biimpar 297 | . . 3 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ dom 𝑅) |
6 | ecdmn0m 6567 | . . 3 ⊢ (𝑦 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝑦]𝑅) | |
7 | 5, 6 | sylib 122 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑦 ∈ 𝐴) → ∃𝑥 𝑥 ∈ [𝑦]𝑅) |
8 | 1, 3, 7 | ectocld 6591 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∃wex 1490 ∈ wcel 2146 dom cdm 4620 [cec 6523 / cqs 6524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-ec 6527 df-qs 6531 |
This theorem is referenced by: elqsn0 6594 ecelqsdm 6595 |
Copyright terms: Public domain | W3C validator |