| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elqsn0m | GIF version | ||
| Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.) | 
| Ref | Expression | 
|---|---|
| elqsn0m | ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
| 2 | eleq2 2260 | . . 3 ⊢ ([𝑦]𝑅 = 𝐵 → (𝑥 ∈ [𝑦]𝑅 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | 2 | exbidv 1839 | . 2 ⊢ ([𝑦]𝑅 = 𝐵 → (∃𝑥 𝑥 ∈ [𝑦]𝑅 ↔ ∃𝑥 𝑥 ∈ 𝐵)) | 
| 4 | eleq2 2260 | . . . 4 ⊢ (dom 𝑅 = 𝐴 → (𝑦 ∈ dom 𝑅 ↔ 𝑦 ∈ 𝐴)) | |
| 5 | 4 | biimpar 297 | . . 3 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ dom 𝑅) | 
| 6 | ecdmn0m 6636 | . . 3 ⊢ (𝑦 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝑦]𝑅) | |
| 7 | 5, 6 | sylib 122 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝑦 ∈ 𝐴) → ∃𝑥 𝑥 ∈ [𝑦]𝑅) | 
| 8 | 1, 3, 7 | ectocld 6660 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 dom cdm 4663 [cec 6590 / cqs 6591 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-ec 6594 df-qs 6598 | 
| This theorem is referenced by: elqsn0 6663 ecelqsdm 6664 | 
| Copyright terms: Public domain | W3C validator |