ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elqsn0m GIF version

Theorem elqsn0m 6713
Description: An element of a quotient set is inhabited. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
elqsn0m ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥𝐵)
Distinct variable groups:   𝑥,𝑅   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elqsn0m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . 2 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 eleq2 2271 . . 3 ([𝑦]𝑅 = 𝐵 → (𝑥 ∈ [𝑦]𝑅𝑥𝐵))
32exbidv 1849 . 2 ([𝑦]𝑅 = 𝐵 → (∃𝑥 𝑥 ∈ [𝑦]𝑅 ↔ ∃𝑥 𝑥𝐵))
4 eleq2 2271 . . . 4 (dom 𝑅 = 𝐴 → (𝑦 ∈ dom 𝑅𝑦𝐴))
54biimpar 297 . . 3 ((dom 𝑅 = 𝐴𝑦𝐴) → 𝑦 ∈ dom 𝑅)
6 ecdmn0m 6687 . . 3 (𝑦 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝑦]𝑅)
75, 6sylib 122 . 2 ((dom 𝑅 = 𝐴𝑦𝐴) → ∃𝑥 𝑥 ∈ [𝑦]𝑅)
81, 3, 7ectocld 6711 1 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wex 1516  wcel 2178  dom cdm 4693  [cec 6641   / cqs 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-ec 6645  df-qs 6649
This theorem is referenced by:  elqsn0  6714  ecelqsdm  6715
  Copyright terms: Public domain W3C validator