| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibi | GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ibi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibi.1 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ibir 177 pm5.21nii 705 elab3gf 2914 elpwi 3615 elsni 3641 elpr2 3645 elpri 3646 eltpi 3670 snssi 3767 prssi 3781 eloni 4411 limuni2 4433 elxpi 4680 releldmb 4904 relelrnb 4905 elrnmpt2d 4922 elrelimasn 5036 funeu 5284 fneu 5365 fvelima 5615 eloprabi 6263 fo2ndf 6294 tfrlem9 6386 ecexr 6606 elqsi 6655 qsel 6680 ecopovsym 6699 ecopovsymg 6702 elpmi 6735 elmapi 6738 pmsspw 6751 brdomi 6817 en1uniel 6872 mapdom1g 6917 dif1en 6949 enomnilem 7213 omnimkv 7231 mkvprop 7233 fodjumkvlemres 7234 enmkvlem 7236 enwomnilem 7244 ltrnqi 7505 peano2nnnn 7937 peano2nn 9019 eliooord 10020 fzrev3i 10180 elfzole1 10248 elfzolt2 10249 bcp1nk 10871 rere 11047 climcl 11464 climcau 11529 fprodcnv 11807 isstruct2im 12713 restsspw 12951 mgmcl 13061 submss 13178 subm0cl 13180 submcl 13181 submmnd 13182 subgsubm 13402 opprnzr 13818 opprdomn 13907 zrhval 14249 istopfin 14320 uniopn 14321 iunopn 14322 inopn 14323 eltpsg 14360 basis1 14367 basis2 14368 eltg4i 14375 lmff 14569 psmetf 14645 psmet0 14647 psmettri2 14648 metflem 14669 xmetf 14670 xmeteq0 14679 xmettri2 14681 cncff 14897 cncfi 14898 limcresi 14986 dvcnp2cntop 15019 sinq34lt0t 15151 lgsdir2lem2 15354 2sqlem9 15449 |
| Copyright terms: Public domain | W3C validator |