![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibi | GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 142 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 48 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: ibir 175 pm5.21nii 655 elab3gf 2765 elpwi 3438 elsni 3464 elpr2 3468 elpri 3469 eltpi 3489 snssi 3581 prssi 3595 eloni 4202 limuni2 4224 elxpi 4454 releldmb 4672 relelrnb 4673 funeu 5040 fneu 5118 fvelima 5356 eloprabi 5966 fo2ndf 5992 tfrlem9 6084 ecexr 6295 elqsi 6342 qsel 6367 ecopovsym 6386 ecopovsymg 6389 elpmi 6422 elmapi 6425 pmsspw 6438 brdomi 6464 en1uniel 6519 mapdom1g 6561 dif1en 6593 enomnilem 6792 ltrnqi 6978 peano2nnnn 7388 peano2nn 8432 eliooord 9344 fzrev3i 9498 elfzole1 9562 elfzolt2 9563 bcp1nk 10166 rere 10295 climcl 10666 climcau 10732 isstruct2im 11500 istopfin 11552 uniopn 11553 iunopn 11554 inopn 11555 cncff 11588 cncfi 11589 |
Copyright terms: Public domain | W3C validator |