![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibi | GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ibir 177 pm5.21nii 705 elab3gf 2911 elpwi 3611 elsni 3637 elpr2 3641 elpri 3642 eltpi 3666 snssi 3763 prssi 3777 eloni 4407 limuni2 4429 elxpi 4676 releldmb 4900 relelrnb 4901 elrnmpt2d 4918 elrelimasn 5032 funeu 5280 fneu 5359 fvelima 5609 eloprabi 6251 fo2ndf 6282 tfrlem9 6374 ecexr 6594 elqsi 6643 qsel 6668 ecopovsym 6687 ecopovsymg 6690 elpmi 6723 elmapi 6726 pmsspw 6739 brdomi 6805 en1uniel 6860 mapdom1g 6905 dif1en 6937 enomnilem 7199 omnimkv 7217 mkvprop 7219 fodjumkvlemres 7220 enmkvlem 7222 enwomnilem 7230 ltrnqi 7483 peano2nnnn 7915 peano2nn 8996 eliooord 9997 fzrev3i 10157 elfzole1 10225 elfzolt2 10226 bcp1nk 10836 rere 11012 climcl 11428 climcau 11493 fprodcnv 11771 isstruct2im 12631 restsspw 12863 mgmcl 12945 submss 13051 subm0cl 13053 submcl 13054 submmnd 13055 subgsubm 13269 opprnzr 13685 opprdomn 13774 zrhval 14116 istopfin 14179 uniopn 14180 iunopn 14181 inopn 14182 eltpsg 14219 basis1 14226 basis2 14227 eltg4i 14234 lmff 14428 psmetf 14504 psmet0 14506 psmettri2 14507 metflem 14528 xmetf 14529 xmeteq0 14538 xmettri2 14540 cncff 14756 cncfi 14757 limcresi 14845 dvcnp2cntop 14878 sinq34lt0t 15007 lgsdir2lem2 15186 2sqlem9 15281 |
Copyright terms: Public domain | W3C validator |