![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibi | GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ibir 177 pm5.21nii 705 elab3gf 2899 elpwi 3596 elsni 3622 elpr2 3626 elpri 3627 eltpi 3651 snssi 3748 prssi 3762 eloni 4387 limuni2 4409 elxpi 4654 releldmb 4876 relelrnb 4877 elrnmpt2d 4894 elrelimasn 5006 funeu 5253 fneu 5332 fvelima 5580 eloprabi 6210 fo2ndf 6241 tfrlem9 6333 ecexr 6553 elqsi 6600 qsel 6625 ecopovsym 6644 ecopovsymg 6647 elpmi 6680 elmapi 6683 pmsspw 6696 brdomi 6762 en1uniel 6817 mapdom1g 6860 dif1en 6892 enomnilem 7149 omnimkv 7167 mkvprop 7169 fodjumkvlemres 7170 enmkvlem 7172 enwomnilem 7180 ltrnqi 7433 peano2nnnn 7865 peano2nn 8944 eliooord 9941 fzrev3i 10101 elfzole1 10168 elfzolt2 10169 bcp1nk 10755 rere 10887 climcl 11303 climcau 11368 fprodcnv 11646 isstruct2im 12485 restsspw 12715 mgmcl 12796 submss 12888 subm0cl 12890 submcl 12891 subgsubm 13087 istopfin 13771 uniopn 13772 iunopn 13773 inopn 13774 eltpsg 13811 basis1 13818 basis2 13819 eltg4i 13826 lmff 14020 psmetf 14096 psmet0 14098 psmettri2 14099 metflem 14120 xmetf 14121 xmeteq0 14130 xmettri2 14132 cncff 14335 cncfi 14336 limcresi 14406 dvcnp2cntop 14434 sinq34lt0t 14523 lgsdir2lem2 14701 2sqlem9 14742 |
Copyright terms: Public domain | W3C validator |