| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibi | GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ibi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibi.1 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ibir 177 pm5.21nii 709 elab3gf 2953 elpwi 3658 elsni 3684 elpr2 3688 elpri 3689 eltpi 3713 snssi 3811 prssi 3825 eloni 4465 limuni2 4487 elxpi 4734 releldmb 4960 relelrnb 4961 elrnmpt2d 4978 elrelimasn 5093 funeu 5342 fneu 5426 fvelima 5684 eloprabi 6340 fo2ndf 6371 tfrlem9 6463 ecexr 6683 elqsi 6732 qsel 6757 ecopovsym 6776 ecopovsymg 6779 elpmi 6812 elmapi 6815 pmsspw 6828 brdomi 6896 en1uniel 6954 mapdom1g 7004 dif1en 7037 enomnilem 7301 omnimkv 7319 mkvprop 7321 fodjumkvlemres 7322 enmkvlem 7324 enwomnilem 7332 ltrnqi 7604 peano2nnnn 8036 peano2nn 9118 eliooord 10120 fzrev3i 10280 elfzole1 10348 elfzolt2 10349 bcp1nk 10979 rere 11371 climcl 11788 climcau 11853 fprodcnv 12131 isstruct2im 13037 restsspw 13277 mgmcl 13387 submss 13504 subm0cl 13506 submcl 13507 submmnd 13508 subgsubm 13728 opprnzr 14144 opprdomn 14233 zrhval 14575 istopfin 14668 uniopn 14669 iunopn 14670 inopn 14671 eltpsg 14708 basis1 14715 basis2 14716 eltg4i 14723 lmff 14917 psmetf 14993 psmet0 14995 psmettri2 14996 metflem 15017 xmetf 15018 xmeteq0 15027 xmettri2 15029 cncff 15245 cncfi 15246 limcresi 15334 dvcnp2cntop 15367 sinq34lt0t 15499 lgsdir2lem2 15702 2sqlem9 15797 uhgrfm 15867 ushgrfm 15868 upgrfen 15891 umgrfen 15901 uspgrfen 15951 usgrfen 15952 |
| Copyright terms: Public domain | W3C validator |