| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibi | GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ibi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibi.1 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
| 3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ibir 177 pm5.21nii 705 elab3gf 2914 elpwi 3615 elsni 3641 elpr2 3645 elpri 3646 eltpi 3670 snssi 3767 prssi 3781 eloni 4411 limuni2 4433 elxpi 4680 releldmb 4904 relelrnb 4905 elrnmpt2d 4922 elrelimasn 5036 funeu 5284 fneu 5365 fvelima 5615 eloprabi 6263 fo2ndf 6294 tfrlem9 6386 ecexr 6606 elqsi 6655 qsel 6680 ecopovsym 6699 ecopovsymg 6702 elpmi 6735 elmapi 6738 pmsspw 6751 brdomi 6817 en1uniel 6872 mapdom1g 6917 dif1en 6949 enomnilem 7213 omnimkv 7231 mkvprop 7233 fodjumkvlemres 7234 enmkvlem 7236 enwomnilem 7244 ltrnqi 7507 peano2nnnn 7939 peano2nn 9021 eliooord 10022 fzrev3i 10182 elfzole1 10250 elfzolt2 10251 bcp1nk 10873 rere 11049 climcl 11466 climcau 11531 fprodcnv 11809 isstruct2im 12715 restsspw 12953 mgmcl 13063 submss 13180 subm0cl 13182 submcl 13183 submmnd 13184 subgsubm 13404 opprnzr 13820 opprdomn 13909 zrhval 14251 istopfin 14344 uniopn 14345 iunopn 14346 inopn 14347 eltpsg 14384 basis1 14391 basis2 14392 eltg4i 14399 lmff 14593 psmetf 14669 psmet0 14671 psmettri2 14672 metflem 14693 xmetf 14694 xmeteq0 14703 xmettri2 14705 cncff 14921 cncfi 14922 limcresi 15010 dvcnp2cntop 15043 sinq34lt0t 15175 lgsdir2lem2 15378 2sqlem9 15473 |
| Copyright terms: Public domain | W3C validator |