Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ibi | GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 143 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ibir 176 pm5.21nii 694 elab3gf 2876 elpwi 3568 elsni 3594 elpr2 3598 elpri 3599 eltpi 3623 snssi 3717 prssi 3731 eloni 4353 limuni2 4375 elxpi 4620 releldmb 4841 relelrnb 4842 elrnmpt2d 4859 funeu 5213 fneu 5292 fvelima 5538 eloprabi 6164 fo2ndf 6195 tfrlem9 6287 ecexr 6506 elqsi 6553 qsel 6578 ecopovsym 6597 ecopovsymg 6600 elpmi 6633 elmapi 6636 pmsspw 6649 brdomi 6715 en1uniel 6770 mapdom1g 6813 dif1en 6845 enomnilem 7102 omnimkv 7120 mkvprop 7122 fodjumkvlemres 7123 enmkvlem 7125 enwomnilem 7133 ltrnqi 7362 peano2nnnn 7794 peano2nn 8869 eliooord 9864 fzrev3i 10023 elfzole1 10090 elfzolt2 10091 bcp1nk 10675 rere 10807 climcl 11223 climcau 11288 fprodcnv 11566 isstruct2im 12404 restsspw 12566 mgmcl 12590 istopfin 12638 uniopn 12639 iunopn 12640 inopn 12641 eltpsg 12678 basis1 12685 basis2 12686 eltg4i 12695 lmff 12889 psmetf 12965 psmet0 12967 psmettri2 12968 metflem 12989 xmetf 12990 xmeteq0 12999 xmettri2 13001 cncff 13204 cncfi 13205 limcresi 13275 dvcnp2cntop 13303 sinq34lt0t 13392 lgsdir2lem2 13570 2sqlem9 13600 |
Copyright terms: Public domain | W3C validator |