![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibi | GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibi.1 | . . 3 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 144 | . 2 ⊢ (𝜑 → (𝜑 → 𝜓)) |
3 | 2 | pm2.43i 49 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ibir 177 pm5.21nii 705 elab3gf 2910 elpwi 3610 elsni 3636 elpr2 3640 elpri 3641 eltpi 3665 snssi 3762 prssi 3776 eloni 4406 limuni2 4428 elxpi 4675 releldmb 4899 relelrnb 4900 elrnmpt2d 4917 elrelimasn 5031 funeu 5279 fneu 5358 fvelima 5608 eloprabi 6249 fo2ndf 6280 tfrlem9 6372 ecexr 6592 elqsi 6641 qsel 6666 ecopovsym 6685 ecopovsymg 6688 elpmi 6721 elmapi 6724 pmsspw 6737 brdomi 6803 en1uniel 6858 mapdom1g 6903 dif1en 6935 enomnilem 7197 omnimkv 7215 mkvprop 7217 fodjumkvlemres 7218 enmkvlem 7220 enwomnilem 7228 ltrnqi 7481 peano2nnnn 7913 peano2nn 8994 eliooord 9994 fzrev3i 10154 elfzole1 10222 elfzolt2 10223 bcp1nk 10833 rere 11009 climcl 11425 climcau 11490 fprodcnv 11768 isstruct2im 12628 restsspw 12860 mgmcl 12942 submss 13048 subm0cl 13050 submcl 13051 submmnd 13052 subgsubm 13266 opprnzr 13682 opprdomn 13771 zrhval 14105 istopfin 14168 uniopn 14169 iunopn 14170 inopn 14171 eltpsg 14208 basis1 14215 basis2 14216 eltg4i 14223 lmff 14417 psmetf 14493 psmet0 14495 psmettri2 14496 metflem 14517 xmetf 14518 xmeteq0 14527 xmettri2 14529 cncff 14732 cncfi 14733 limcresi 14820 dvcnp2cntop 14848 sinq34lt0t 14966 lgsdir2lem2 15145 2sqlem9 15211 |
Copyright terms: Public domain | W3C validator |