| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnrehmeocntop | GIF version | ||
| Description: The canonical bijection from (ℝ × ℝ) to ℂ described in cnref1o 9846 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cnrehmeo.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
| cnrehmeo.2 | ⊢ 𝐽 = (topGen‘ran (,)) |
| cnrehmeocntop.3 | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
| Ref | Expression |
|---|---|
| cnrehmeocntop | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrehmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
| 2 | cnrehmeo.2 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | retopon 15200 | . . . . . . 7 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 4 | 2, 3 | eqeltri 2302 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
| 5 | 4 | a1i 9 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℝ)) |
| 6 | cnrehmeocntop.3 | . . . . . . . 8 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
| 7 | 6 | cntoptop 15207 | . . . . . . 7 ⊢ 𝐾 ∈ Top |
| 8 | cnrest2r 14911 | . . . . . . 7 ⊢ (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) | |
| 9 | 7, 8 | mp1i 10 | . . . . . 6 ⊢ (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 10 | 5, 5 | cnmpt1st 14962 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 11 | 6 | tgioo2cntop 15231 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
| 12 | 2, 11 | eqtri 2250 | . . . . . . . 8 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
| 13 | 12 | oveq2i 6012 | . . . . . . 7 ⊢ ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) |
| 14 | 10, 13 | eleqtrdi 2322 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
| 15 | 9, 14 | sseldd 3225 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 16 | 6 | cntoptopon 15206 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 17 | 16 | a1i 9 | . . . . . . 7 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
| 18 | ax-icn 8094 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 19 | 18 | a1i 9 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
| 20 | 5, 5, 17, 19 | cnmpt2c 14964 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 21 | 5, 5 | cnmpt2nd 14963 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 22 | 21, 13 | eleqtrdi 2322 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
| 23 | 9, 22 | sseldd 3225 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 24 | 6 | mulcncntop 15238 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 25 | 24 | a1i 9 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 26 | 5, 5, 20, 23, 25 | cnmpt22f 14969 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 27 | 6 | addcncntop 15236 | . . . . . 6 ⊢ + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 28 | 27 | a1i 9 | . . . . 5 ⊢ (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 29 | 5, 5, 15, 26, 28 | cnmpt22f 14969 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 30 | 1, 29 | eqeltrid 2316 | . . 3 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 31 | 1 | cnrecnv 11421 | . . . 4 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
| 32 | ref 11366 | . . . . . . . 8 ⊢ ℜ:ℂ⟶ℝ | |
| 33 | 32 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℜ:ℂ⟶ℝ) |
| 34 | 33 | feqmptd 5687 | . . . . . 6 ⊢ (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧))) |
| 35 | recncf 15260 | . . . . . . 7 ⊢ ℜ ∈ (ℂ–cn→ℝ) | |
| 36 | ssid 3244 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
| 37 | ax-resscn 8091 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 38 | 16 | toponrestid 14695 | . . . . . . . . 9 ⊢ 𝐾 = (𝐾 ↾t ℂ) |
| 39 | 6, 38, 12 | cncfcncntop 15267 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)) |
| 40 | 36, 37, 39 | mp2an 426 | . . . . . . 7 ⊢ (ℂ–cn→ℝ) = (𝐾 Cn 𝐽) |
| 41 | 35, 40 | eleqtri 2304 | . . . . . 6 ⊢ ℜ ∈ (𝐾 Cn 𝐽) |
| 42 | 34, 41 | eqeltrrdi 2321 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
| 43 | imf 11367 | . . . . . . . 8 ⊢ ℑ:ℂ⟶ℝ | |
| 44 | 43 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℑ:ℂ⟶ℝ) |
| 45 | 44 | feqmptd 5687 | . . . . . 6 ⊢ (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧))) |
| 46 | imcncf 15261 | . . . . . . 7 ⊢ ℑ ∈ (ℂ–cn→ℝ) | |
| 47 | 46, 40 | eleqtri 2304 | . . . . . 6 ⊢ ℑ ∈ (𝐾 Cn 𝐽) |
| 48 | 45, 47 | eqeltrrdi 2321 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
| 49 | 17, 42, 48 | cnmpt1t 14959 | . . . 4 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
| 50 | 31, 49 | eqeltrid 2316 | . . 3 ⊢ (⊤ → ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
| 51 | ishmeo 14978 | . . 3 ⊢ (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))) | |
| 52 | 30, 50, 51 | sylanbrc 417 | . 2 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)) |
| 53 | 52 | mptru 1404 | 1 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ⊆ wss 3197 〈cop 3669 ↦ cmpt 4145 ◡ccnv 4718 ran crn 4720 ∘ ccom 4723 ⟶wf 5314 ‘cfv 5318 (class class class)co 6001 ∈ cmpo 6003 ℂcc 7997 ℝcr 7998 ici 8001 + caddc 8002 · cmul 8004 − cmin 8317 (,)cioo 10084 ℜcre 11351 ℑcim 11352 abscabs 11508 ↾t crest 13272 topGenctg 13287 MetOpencmopn 14505 Topctop 14671 TopOnctopon 14684 Cn ccn 14859 ×t ctx 14926 Homeochmeo 14974 –cn→ccncf 15244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 ax-addf 8121 ax-mulf 8122 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-map 6797 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-xneg 9968 df-xadd 9969 df-ioo 10088 df-seqfrec 10670 df-exp 10761 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-rest 13274 df-topgen 13293 df-psmet 14507 df-xmet 14508 df-met 14509 df-bl 14510 df-mopn 14511 df-top 14672 df-topon 14685 df-bases 14717 df-cn 14862 df-cnp 14863 df-tx 14927 df-hmeo 14975 df-cncf 15245 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |