ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrehmeocntop GIF version

Theorem cnrehmeocntop 14846
Description: The canonical bijection from (ℝ × ℝ) to described in cnref1o 9725 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cnrehmeo.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnrehmeo.2 𝐽 = (topGen‘ran (,))
cnrehmeocntop.3 𝐾 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
cnrehmeocntop 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Distinct variable group:   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem cnrehmeocntop
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnrehmeo.1 . . . 4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 cnrehmeo.2 . . . . . . 7 𝐽 = (topGen‘ran (,))
3 retopon 14762 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
42, 3eqeltri 2269 . . . . . 6 𝐽 ∈ (TopOn‘ℝ)
54a1i 9 . . . . 5 (⊤ → 𝐽 ∈ (TopOn‘ℝ))
6 cnrehmeocntop.3 . . . . . . . 8 𝐾 = (MetOpen‘(abs ∘ − ))
76cntoptop 14769 . . . . . . 7 𝐾 ∈ Top
8 cnrest2r 14473 . . . . . . 7 (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
97, 8mp1i 10 . . . . . 6 (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
105, 5cnmpt1st 14524 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
116tgioo2cntop 14793 . . . . . . . . 9 (topGen‘ran (,)) = (𝐾t ℝ)
122, 11eqtri 2217 . . . . . . . 8 𝐽 = (𝐾t ℝ)
1312oveq2i 5933 . . . . . . 7 ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾t ℝ))
1410, 13eleqtrdi 2289 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
159, 14sseldd 3184 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
166cntoptopon 14768 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
1716a1i 9 . . . . . . 7 (⊤ → 𝐾 ∈ (TopOn‘ℂ))
18 ax-icn 7974 . . . . . . . 8 i ∈ ℂ
1918a1i 9 . . . . . . 7 (⊤ → i ∈ ℂ)
205, 5, 17, 19cnmpt2c 14526 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
215, 5cnmpt2nd 14525 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2221, 13eleqtrdi 2289 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
239, 22sseldd 3184 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
246mulcncntop 14800 . . . . . . 7 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2524a1i 9 . . . . . 6 (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
265, 5, 20, 23, 25cnmpt22f 14531 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
276addcncntop 14798 . . . . . 6 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2827a1i 9 . . . . 5 (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
295, 5, 15, 26, 28cnmpt22f 14531 . . . 4 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
301, 29eqeltrid 2283 . . 3 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
311cnrecnv 11075 . . . 4 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
32 ref 11020 . . . . . . . 8 ℜ:ℂ⟶ℝ
3332a1i 9 . . . . . . 7 (⊤ → ℜ:ℂ⟶ℝ)
3433feqmptd 5614 . . . . . 6 (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)))
35 recncf 14822 . . . . . . 7 ℜ ∈ (ℂ–cn→ℝ)
36 ssid 3203 . . . . . . . 8 ℂ ⊆ ℂ
37 ax-resscn 7971 . . . . . . . 8 ℝ ⊆ ℂ
3816toponrestid 14257 . . . . . . . . 9 𝐾 = (𝐾t ℂ)
396, 38, 12cncfcncntop 14829 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽))
4036, 37, 39mp2an 426 . . . . . . 7 (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)
4135, 40eleqtri 2271 . . . . . 6 ℜ ∈ (𝐾 Cn 𝐽)
4234, 41eqeltrrdi 2288 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽))
43 imf 11021 . . . . . . . 8 ℑ:ℂ⟶ℝ
4443a1i 9 . . . . . . 7 (⊤ → ℑ:ℂ⟶ℝ)
4544feqmptd 5614 . . . . . 6 (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)))
46 imcncf 14823 . . . . . . 7 ℑ ∈ (ℂ–cn→ℝ)
4746, 40eleqtri 2271 . . . . . 6 ℑ ∈ (𝐾 Cn 𝐽)
4845, 47eqeltrrdi 2288 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽))
4917, 42, 48cnmpt1t 14521 . . . 4 (⊤ → (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
5031, 49eqeltrid 2283 . . 3 (⊤ → 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
51 ishmeo 14540 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))))
5230, 50, 51sylanbrc 417 . 2 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾))
5352mptru 1373 1 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wtru 1365  wcel 2167  wss 3157  cop 3625  cmpt 4094  ccnv 4662  ran crn 4664  ccom 4667  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  cc 7877  cr 7878  ici 7881   + caddc 7882   · cmul 7884  cmin 8197  (,)cioo 9963  cre 11005  cim 11006  abscabs 11162  t crest 12910  topGenctg 12925  MetOpencmopn 14097  Topctop 14233  TopOnctopon 14246   Cn ccn 14421   ×t ctx 14488  Homeochmeo 14536  cnccncf 14806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-map 6709  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-cn 14424  df-cnp 14425  df-tx 14489  df-hmeo 14537  df-cncf 14807
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator