| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnrehmeocntop | GIF version | ||
| Description: The canonical bijection from (ℝ × ℝ) to ℂ described in cnref1o 9774 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cnrehmeo.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
| cnrehmeo.2 | ⊢ 𝐽 = (topGen‘ran (,)) |
| cnrehmeocntop.3 | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
| Ref | Expression |
|---|---|
| cnrehmeocntop | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrehmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
| 2 | cnrehmeo.2 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | retopon 15031 | . . . . . . 7 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 4 | 2, 3 | eqeltri 2278 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
| 5 | 4 | a1i 9 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℝ)) |
| 6 | cnrehmeocntop.3 | . . . . . . . 8 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
| 7 | 6 | cntoptop 15038 | . . . . . . 7 ⊢ 𝐾 ∈ Top |
| 8 | cnrest2r 14742 | . . . . . . 7 ⊢ (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) | |
| 9 | 7, 8 | mp1i 10 | . . . . . 6 ⊢ (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 10 | 5, 5 | cnmpt1st 14793 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 11 | 6 | tgioo2cntop 15062 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
| 12 | 2, 11 | eqtri 2226 | . . . . . . . 8 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
| 13 | 12 | oveq2i 5957 | . . . . . . 7 ⊢ ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) |
| 14 | 10, 13 | eleqtrdi 2298 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
| 15 | 9, 14 | sseldd 3194 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 16 | 6 | cntoptopon 15037 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 17 | 16 | a1i 9 | . . . . . . 7 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
| 18 | ax-icn 8022 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 19 | 18 | a1i 9 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
| 20 | 5, 5, 17, 19 | cnmpt2c 14795 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 21 | 5, 5 | cnmpt2nd 14794 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 22 | 21, 13 | eleqtrdi 2298 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
| 23 | 9, 22 | sseldd 3194 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 24 | 6 | mulcncntop 15069 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 25 | 24 | a1i 9 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 26 | 5, 5, 20, 23, 25 | cnmpt22f 14800 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 27 | 6 | addcncntop 15067 | . . . . . 6 ⊢ + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 28 | 27 | a1i 9 | . . . . 5 ⊢ (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 29 | 5, 5, 15, 26, 28 | cnmpt22f 14800 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 30 | 1, 29 | eqeltrid 2292 | . . 3 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 31 | 1 | cnrecnv 11254 | . . . 4 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
| 32 | ref 11199 | . . . . . . . 8 ⊢ ℜ:ℂ⟶ℝ | |
| 33 | 32 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℜ:ℂ⟶ℝ) |
| 34 | 33 | feqmptd 5634 | . . . . . 6 ⊢ (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧))) |
| 35 | recncf 15091 | . . . . . . 7 ⊢ ℜ ∈ (ℂ–cn→ℝ) | |
| 36 | ssid 3213 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
| 37 | ax-resscn 8019 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 38 | 16 | toponrestid 14526 | . . . . . . . . 9 ⊢ 𝐾 = (𝐾 ↾t ℂ) |
| 39 | 6, 38, 12 | cncfcncntop 15098 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)) |
| 40 | 36, 37, 39 | mp2an 426 | . . . . . . 7 ⊢ (ℂ–cn→ℝ) = (𝐾 Cn 𝐽) |
| 41 | 35, 40 | eleqtri 2280 | . . . . . 6 ⊢ ℜ ∈ (𝐾 Cn 𝐽) |
| 42 | 34, 41 | eqeltrrdi 2297 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
| 43 | imf 11200 | . . . . . . . 8 ⊢ ℑ:ℂ⟶ℝ | |
| 44 | 43 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℑ:ℂ⟶ℝ) |
| 45 | 44 | feqmptd 5634 | . . . . . 6 ⊢ (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧))) |
| 46 | imcncf 15092 | . . . . . . 7 ⊢ ℑ ∈ (ℂ–cn→ℝ) | |
| 47 | 46, 40 | eleqtri 2280 | . . . . . 6 ⊢ ℑ ∈ (𝐾 Cn 𝐽) |
| 48 | 45, 47 | eqeltrrdi 2297 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
| 49 | 17, 42, 48 | cnmpt1t 14790 | . . . 4 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
| 50 | 31, 49 | eqeltrid 2292 | . . 3 ⊢ (⊤ → ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
| 51 | ishmeo 14809 | . . 3 ⊢ (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))) | |
| 52 | 30, 50, 51 | sylanbrc 417 | . 2 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)) |
| 53 | 52 | mptru 1382 | 1 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊤wtru 1374 ∈ wcel 2176 ⊆ wss 3166 〈cop 3636 ↦ cmpt 4106 ◡ccnv 4675 ran crn 4677 ∘ ccom 4680 ⟶wf 5268 ‘cfv 5272 (class class class)co 5946 ∈ cmpo 5948 ℂcc 7925 ℝcr 7926 ici 7929 + caddc 7930 · cmul 7932 − cmin 8245 (,)cioo 10012 ℜcre 11184 ℑcim 11185 abscabs 11341 ↾t crest 13104 topGenctg 13119 MetOpencmopn 14336 Topctop 14502 TopOnctopon 14515 Cn ccn 14690 ×t ctx 14757 Homeochmeo 14805 –cn→ccncf 15075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 ax-addf 8049 ax-mulf 8050 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-map 6739 df-sup 7088 df-inf 7089 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-xneg 9896 df-xadd 9897 df-ioo 10016 df-seqfrec 10595 df-exp 10686 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-rest 13106 df-topgen 13125 df-psmet 14338 df-xmet 14339 df-met 14340 df-bl 14341 df-mopn 14342 df-top 14503 df-topon 14516 df-bases 14548 df-cn 14693 df-cnp 14694 df-tx 14758 df-hmeo 14806 df-cncf 15076 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |