| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnrehmeocntop | GIF version | ||
| Description: The canonical bijection from (ℝ × ℝ) to ℂ described in cnref1o 9807 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
| Ref | Expression |
|---|---|
| cnrehmeo.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
| cnrehmeo.2 | ⊢ 𝐽 = (topGen‘ran (,)) |
| cnrehmeocntop.3 | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
| Ref | Expression |
|---|---|
| cnrehmeocntop | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnrehmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
| 2 | cnrehmeo.2 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 3 | retopon 15113 | . . . . . . 7 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 4 | 2, 3 | eqeltri 2280 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
| 5 | 4 | a1i 9 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℝ)) |
| 6 | cnrehmeocntop.3 | . . . . . . . 8 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
| 7 | 6 | cntoptop 15120 | . . . . . . 7 ⊢ 𝐾 ∈ Top |
| 8 | cnrest2r 14824 | . . . . . . 7 ⊢ (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) | |
| 9 | 7, 8 | mp1i 10 | . . . . . 6 ⊢ (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 10 | 5, 5 | cnmpt1st 14875 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 11 | 6 | tgioo2cntop 15144 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
| 12 | 2, 11 | eqtri 2228 | . . . . . . . 8 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
| 13 | 12 | oveq2i 5978 | . . . . . . 7 ⊢ ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) |
| 14 | 10, 13 | eleqtrdi 2300 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
| 15 | 9, 14 | sseldd 3202 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 16 | 6 | cntoptopon 15119 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 17 | 16 | a1i 9 | . . . . . . 7 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
| 18 | ax-icn 8055 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 19 | 18 | a1i 9 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
| 20 | 5, 5, 17, 19 | cnmpt2c 14877 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 21 | 5, 5 | cnmpt2nd 14876 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
| 22 | 21, 13 | eleqtrdi 2300 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
| 23 | 9, 22 | sseldd 3202 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 24 | 6 | mulcncntop 15151 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 25 | 24 | a1i 9 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 26 | 5, 5, 20, 23, 25 | cnmpt22f 14882 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 27 | 6 | addcncntop 15149 | . . . . . 6 ⊢ + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
| 28 | 27 | a1i 9 | . . . . 5 ⊢ (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 29 | 5, 5, 15, 26, 28 | cnmpt22f 14882 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 30 | 1, 29 | eqeltrid 2294 | . . 3 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
| 31 | 1 | cnrecnv 11336 | . . . 4 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
| 32 | ref 11281 | . . . . . . . 8 ⊢ ℜ:ℂ⟶ℝ | |
| 33 | 32 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℜ:ℂ⟶ℝ) |
| 34 | 33 | feqmptd 5655 | . . . . . 6 ⊢ (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧))) |
| 35 | recncf 15173 | . . . . . . 7 ⊢ ℜ ∈ (ℂ–cn→ℝ) | |
| 36 | ssid 3221 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
| 37 | ax-resscn 8052 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 38 | 16 | toponrestid 14608 | . . . . . . . . 9 ⊢ 𝐾 = (𝐾 ↾t ℂ) |
| 39 | 6, 38, 12 | cncfcncntop 15180 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)) |
| 40 | 36, 37, 39 | mp2an 426 | . . . . . . 7 ⊢ (ℂ–cn→ℝ) = (𝐾 Cn 𝐽) |
| 41 | 35, 40 | eleqtri 2282 | . . . . . 6 ⊢ ℜ ∈ (𝐾 Cn 𝐽) |
| 42 | 34, 41 | eqeltrrdi 2299 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
| 43 | imf 11282 | . . . . . . . 8 ⊢ ℑ:ℂ⟶ℝ | |
| 44 | 43 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℑ:ℂ⟶ℝ) |
| 45 | 44 | feqmptd 5655 | . . . . . 6 ⊢ (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧))) |
| 46 | imcncf 15174 | . . . . . . 7 ⊢ ℑ ∈ (ℂ–cn→ℝ) | |
| 47 | 46, 40 | eleqtri 2282 | . . . . . 6 ⊢ ℑ ∈ (𝐾 Cn 𝐽) |
| 48 | 45, 47 | eqeltrrdi 2299 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
| 49 | 17, 42, 48 | cnmpt1t 14872 | . . . 4 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
| 50 | 31, 49 | eqeltrid 2294 | . . 3 ⊢ (⊤ → ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
| 51 | ishmeo 14891 | . . 3 ⊢ (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))) | |
| 52 | 30, 50, 51 | sylanbrc 417 | . 2 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)) |
| 53 | 52 | mptru 1382 | 1 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊤wtru 1374 ∈ wcel 2178 ⊆ wss 3174 〈cop 3646 ↦ cmpt 4121 ◡ccnv 4692 ran crn 4694 ∘ ccom 4697 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 ∈ cmpo 5969 ℂcc 7958 ℝcr 7959 ici 7962 + caddc 7963 · cmul 7965 − cmin 8278 (,)cioo 10045 ℜcre 11266 ℑcim 11267 abscabs 11423 ↾t crest 13186 topGenctg 13201 MetOpencmopn 14418 Topctop 14584 TopOnctopon 14597 Cn ccn 14772 ×t ctx 14839 Homeochmeo 14887 –cn→ccncf 15157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 ax-addf 8082 ax-mulf 8083 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-map 6760 df-sup 7112 df-inf 7113 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-xneg 9929 df-xadd 9930 df-ioo 10049 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-rest 13188 df-topgen 13207 df-psmet 14420 df-xmet 14421 df-met 14422 df-bl 14423 df-mopn 14424 df-top 14585 df-topon 14598 df-bases 14630 df-cn 14775 df-cnp 14776 df-tx 14840 df-hmeo 14888 df-cncf 15158 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |