ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrehmeocntop GIF version

Theorem cnrehmeocntop 13233
Description: The canonical bijection from (ℝ × ℝ) to described in cnref1o 9588 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cnrehmeo.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnrehmeo.2 𝐽 = (topGen‘ran (,))
cnrehmeocntop.3 𝐾 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
cnrehmeocntop 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Distinct variable group:   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem cnrehmeocntop
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnrehmeo.1 . . . 4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 cnrehmeo.2 . . . . . . 7 𝐽 = (topGen‘ran (,))
3 retopon 13166 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
42, 3eqeltri 2239 . . . . . 6 𝐽 ∈ (TopOn‘ℝ)
54a1i 9 . . . . 5 (⊤ → 𝐽 ∈ (TopOn‘ℝ))
6 cnrehmeocntop.3 . . . . . . . 8 𝐾 = (MetOpen‘(abs ∘ − ))
76cntoptop 13173 . . . . . . 7 𝐾 ∈ Top
8 cnrest2r 12877 . . . . . . 7 (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
97, 8mp1i 10 . . . . . 6 (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
105, 5cnmpt1st 12928 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
116tgioo2cntop 13189 . . . . . . . . 9 (topGen‘ran (,)) = (𝐾t ℝ)
122, 11eqtri 2186 . . . . . . . 8 𝐽 = (𝐾t ℝ)
1312oveq2i 5853 . . . . . . 7 ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾t ℝ))
1410, 13eleqtrdi 2259 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
159, 14sseldd 3143 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
166cntoptopon 13172 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
1716a1i 9 . . . . . . 7 (⊤ → 𝐾 ∈ (TopOn‘ℂ))
18 ax-icn 7848 . . . . . . . 8 i ∈ ℂ
1918a1i 9 . . . . . . 7 (⊤ → i ∈ ℂ)
205, 5, 17, 19cnmpt2c 12930 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
215, 5cnmpt2nd 12929 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2221, 13eleqtrdi 2259 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
239, 22sseldd 3143 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
246mulcncntop 13194 . . . . . . 7 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2524a1i 9 . . . . . 6 (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
265, 5, 20, 23, 25cnmpt22f 12935 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
276addcncntop 13192 . . . . . 6 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2827a1i 9 . . . . 5 (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
295, 5, 15, 26, 28cnmpt22f 12935 . . . 4 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
301, 29eqeltrid 2253 . . 3 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
311cnrecnv 10852 . . . 4 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
32 ref 10797 . . . . . . . 8 ℜ:ℂ⟶ℝ
3332a1i 9 . . . . . . 7 (⊤ → ℜ:ℂ⟶ℝ)
3433feqmptd 5539 . . . . . 6 (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)))
35 recncf 13213 . . . . . . 7 ℜ ∈ (ℂ–cn→ℝ)
36 ssid 3162 . . . . . . . 8 ℂ ⊆ ℂ
37 ax-resscn 7845 . . . . . . . 8 ℝ ⊆ ℂ
3816toponrestid 12659 . . . . . . . . 9 𝐾 = (𝐾t ℂ)
396, 38, 12cncfcncntop 13220 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽))
4036, 37, 39mp2an 423 . . . . . . 7 (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)
4135, 40eleqtri 2241 . . . . . 6 ℜ ∈ (𝐾 Cn 𝐽)
4234, 41eqeltrrdi 2258 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽))
43 imf 10798 . . . . . . . 8 ℑ:ℂ⟶ℝ
4443a1i 9 . . . . . . 7 (⊤ → ℑ:ℂ⟶ℝ)
4544feqmptd 5539 . . . . . 6 (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)))
46 imcncf 13214 . . . . . . 7 ℑ ∈ (ℂ–cn→ℝ)
4746, 40eleqtri 2241 . . . . . 6 ℑ ∈ (𝐾 Cn 𝐽)
4845, 47eqeltrrdi 2258 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽))
4917, 42, 48cnmpt1t 12925 . . . 4 (⊤ → (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
5031, 49eqeltrid 2253 . . 3 (⊤ → 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
51 ishmeo 12944 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))))
5230, 50, 51sylanbrc 414 . 2 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾))
5352mptru 1352 1 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wtru 1344  wcel 2136  wss 3116  cop 3579  cmpt 4043  ccnv 4603  ran crn 4605  ccom 4608  wf 5184  cfv 5188  (class class class)co 5842  cmpo 5844  cc 7751  cr 7752  ici 7755   + caddc 7756   · cmul 7758  cmin 8069  (,)cioo 9824  cre 10782  cim 10783  abscabs 10939  t crest 12556  topGenctg 12571  MetOpencmopn 12625  Topctop 12635  TopOnctopon 12648   Cn ccn 12825   ×t ctx 12892  Homeochmeo 12940  cnccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-cnp 12829  df-tx 12893  df-hmeo 12941  df-cncf 13198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator