ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnrehmeocntop GIF version

Theorem cnrehmeocntop 14178
Description: The canonical bijection from (ℝ × ℝ) to described in cnref1o 9652 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
cnrehmeo.1 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
cnrehmeo.2 𝐽 = (topGen‘ran (,))
cnrehmeocntop.3 𝐾 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
cnrehmeocntop 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Distinct variable group:   𝑥,𝑦,𝐾
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐽(𝑥,𝑦)

Proof of Theorem cnrehmeocntop
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cnrehmeo.1 . . . 4 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))
2 cnrehmeo.2 . . . . . . 7 𝐽 = (topGen‘ran (,))
3 retopon 14111 . . . . . . 7 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
42, 3eqeltri 2250 . . . . . 6 𝐽 ∈ (TopOn‘ℝ)
54a1i 9 . . . . 5 (⊤ → 𝐽 ∈ (TopOn‘ℝ))
6 cnrehmeocntop.3 . . . . . . . 8 𝐾 = (MetOpen‘(abs ∘ − ))
76cntoptop 14118 . . . . . . 7 𝐾 ∈ Top
8 cnrest2r 13822 . . . . . . 7 (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
97, 8mp1i 10 . . . . . 6 (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾))
105, 5cnmpt1st 13873 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
116tgioo2cntop 14134 . . . . . . . . 9 (topGen‘ran (,)) = (𝐾t ℝ)
122, 11eqtri 2198 . . . . . . . 8 𝐽 = (𝐾t ℝ)
1312oveq2i 5888 . . . . . . 7 ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾t ℝ))
1410, 13eleqtrdi 2270 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
159, 14sseldd 3158 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
166cntoptopon 14117 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
1716a1i 9 . . . . . . 7 (⊤ → 𝐾 ∈ (TopOn‘ℂ))
18 ax-icn 7908 . . . . . . . 8 i ∈ ℂ
1918a1i 9 . . . . . . 7 (⊤ → i ∈ ℂ)
205, 5, 17, 19cnmpt2c 13875 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
215, 5cnmpt2nd 13874 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
2221, 13eleqtrdi 2270 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾t ℝ)))
239, 22sseldd 3158 . . . . . 6 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
246mulcncntop 14139 . . . . . . 7 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2524a1i 9 . . . . . 6 (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
265, 5, 20, 23, 25cnmpt22f 13880 . . . . 5 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
276addcncntop 14137 . . . . . 6 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
2827a1i 9 . . . . 5 (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
295, 5, 15, 26, 28cnmpt22f 13880 . . . 4 (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
301, 29eqeltrid 2264 . . 3 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾))
311cnrecnv 10921 . . . 4 𝐹 = (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩)
32 ref 10866 . . . . . . . 8 ℜ:ℂ⟶ℝ
3332a1i 9 . . . . . . 7 (⊤ → ℜ:ℂ⟶ℝ)
3433feqmptd 5571 . . . . . 6 (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)))
35 recncf 14158 . . . . . . 7 ℜ ∈ (ℂ–cn→ℝ)
36 ssid 3177 . . . . . . . 8 ℂ ⊆ ℂ
37 ax-resscn 7905 . . . . . . . 8 ℝ ⊆ ℂ
3816toponrestid 13606 . . . . . . . . 9 𝐾 = (𝐾t ℂ)
396, 38, 12cncfcncntop 14165 . . . . . . . 8 ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽))
4036, 37, 39mp2an 426 . . . . . . 7 (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)
4135, 40eleqtri 2252 . . . . . 6 ℜ ∈ (𝐾 Cn 𝐽)
4234, 41eqeltrrdi 2269 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽))
43 imf 10867 . . . . . . . 8 ℑ:ℂ⟶ℝ
4443a1i 9 . . . . . . 7 (⊤ → ℑ:ℂ⟶ℝ)
4544feqmptd 5571 . . . . . 6 (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)))
46 imcncf 14159 . . . . . . 7 ℑ ∈ (ℂ–cn→ℝ)
4746, 40eleqtri 2252 . . . . . 6 ℑ ∈ (𝐾 Cn 𝐽)
4845, 47eqeltrrdi 2269 . . . . 5 (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽))
4917, 42, 48cnmpt1t 13870 . . . 4 (⊤ → (𝑧 ∈ ℂ ↦ ⟨(ℜ‘𝑧), (ℑ‘𝑧)⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
5031, 49eqeltrid 2264 . . 3 (⊤ → 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))
51 ishmeo 13889 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))))
5230, 50, 51sylanbrc 417 . 2 (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾))
5352mptru 1362 1 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wtru 1354  wcel 2148  wss 3131  cop 3597  cmpt 4066  ccnv 4627  ran crn 4629  ccom 4632  wf 5214  cfv 5218  (class class class)co 5877  cmpo 5879  cc 7811  cr 7812  ici 7815   + caddc 7816   · cmul 7818  cmin 8130  (,)cioo 9890  cre 10851  cim 10852  abscabs 11008  t crest 12693  topGenctg 12708  MetOpencmopn 13530  Topctop 13582  TopOnctopon 13595   Cn ccn 13770   ×t ctx 13837  Homeochmeo 13885  cnccncf 14142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933  ax-addf 7935  ax-mulf 7936
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-map 6652  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-ioo 9894  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-rest 12695  df-topgen 12714  df-psmet 13532  df-xmet 13533  df-met 13534  df-bl 13535  df-mopn 13536  df-top 13583  df-topon 13596  df-bases 13628  df-cn 13773  df-cnp 13774  df-tx 13838  df-hmeo 13886  df-cncf 14143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator