Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnrehmeocntop | GIF version |
Description: The canonical bijection from (ℝ × ℝ) to ℂ described in cnref1o 9609 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cnrehmeo.1 | ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) |
cnrehmeo.2 | ⊢ 𝐽 = (topGen‘ran (,)) |
cnrehmeocntop.3 | ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) |
Ref | Expression |
---|---|
cnrehmeocntop | ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnrehmeo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) | |
2 | cnrehmeo.2 | . . . . . . 7 ⊢ 𝐽 = (topGen‘ran (,)) | |
3 | retopon 13320 | . . . . . . 7 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
4 | 2, 3 | eqeltri 2243 | . . . . . 6 ⊢ 𝐽 ∈ (TopOn‘ℝ) |
5 | 4 | a1i 9 | . . . . 5 ⊢ (⊤ → 𝐽 ∈ (TopOn‘ℝ)) |
6 | cnrehmeocntop.3 | . . . . . . . 8 ⊢ 𝐾 = (MetOpen‘(abs ∘ − )) | |
7 | 6 | cntoptop 13327 | . . . . . . 7 ⊢ 𝐾 ∈ Top |
8 | cnrest2r 13031 | . . . . . . 7 ⊢ (𝐾 ∈ Top → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) | |
9 | 7, 8 | mp1i 10 | . . . . . 6 ⊢ (⊤ → ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) ⊆ ((𝐽 ×t 𝐽) Cn 𝐾)) |
10 | 5, 5 | cnmpt1st 13082 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
11 | 6 | tgioo2cntop 13343 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) = (𝐾 ↾t ℝ) |
12 | 2, 11 | eqtri 2191 | . . . . . . . 8 ⊢ 𝐽 = (𝐾 ↾t ℝ) |
13 | 12 | oveq2i 5864 | . . . . . . 7 ⊢ ((𝐽 ×t 𝐽) Cn 𝐽) = ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ)) |
14 | 10, 13 | eleqtrdi 2263 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
15 | 9, 14 | sseldd 3148 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑥) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
16 | 6 | cntoptopon 13326 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
17 | 16 | a1i 9 | . . . . . . 7 ⊢ (⊤ → 𝐾 ∈ (TopOn‘ℂ)) |
18 | ax-icn 7869 | . . . . . . . 8 ⊢ i ∈ ℂ | |
19 | 18 | a1i 9 | . . . . . . 7 ⊢ (⊤ → i ∈ ℂ) |
20 | 5, 5, 17, 19 | cnmpt2c 13084 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ i) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
21 | 5, 5 | cnmpt2nd 13083 | . . . . . . . 8 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) |
22 | 21, 13 | eleqtrdi 2263 | . . . . . . 7 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn (𝐾 ↾t ℝ))) |
23 | 9, 22 | sseldd 3148 | . . . . . 6 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ 𝑦) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
24 | 6 | mulcncntop 13348 | . . . . . . 7 ⊢ · ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
25 | 24 | a1i 9 | . . . . . 6 ⊢ (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
26 | 5, 5, 20, 23, 25 | cnmpt22f 13089 | . . . . 5 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (i · 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
27 | 6 | addcncntop 13346 | . . . . . 6 ⊢ + ∈ ((𝐾 ×t 𝐾) Cn 𝐾) |
28 | 27 | a1i 9 | . . . . 5 ⊢ (⊤ → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
29 | 5, 5, 15, 26, 28 | cnmpt22f 13089 | . . . 4 ⊢ (⊤ → (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
30 | 1, 29 | eqeltrid 2257 | . . 3 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾)) |
31 | 1 | cnrecnv 10874 | . . . 4 ⊢ ◡𝐹 = (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) |
32 | ref 10819 | . . . . . . . 8 ⊢ ℜ:ℂ⟶ℝ | |
33 | 32 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℜ:ℂ⟶ℝ) |
34 | 33 | feqmptd 5549 | . . . . . 6 ⊢ (⊤ → ℜ = (𝑧 ∈ ℂ ↦ (ℜ‘𝑧))) |
35 | recncf 13367 | . . . . . . 7 ⊢ ℜ ∈ (ℂ–cn→ℝ) | |
36 | ssid 3167 | . . . . . . . 8 ⊢ ℂ ⊆ ℂ | |
37 | ax-resscn 7866 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
38 | 16 | toponrestid 12813 | . . . . . . . . 9 ⊢ 𝐾 = (𝐾 ↾t ℂ) |
39 | 6, 38, 12 | cncfcncntop 13374 | . . . . . . . 8 ⊢ ((ℂ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℂ–cn→ℝ) = (𝐾 Cn 𝐽)) |
40 | 36, 37, 39 | mp2an 424 | . . . . . . 7 ⊢ (ℂ–cn→ℝ) = (𝐾 Cn 𝐽) |
41 | 35, 40 | eleqtri 2245 | . . . . . 6 ⊢ ℜ ∈ (𝐾 Cn 𝐽) |
42 | 34, 41 | eqeltrrdi 2262 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℜ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
43 | imf 10820 | . . . . . . . 8 ⊢ ℑ:ℂ⟶ℝ | |
44 | 43 | a1i 9 | . . . . . . 7 ⊢ (⊤ → ℑ:ℂ⟶ℝ) |
45 | 44 | feqmptd 5549 | . . . . . 6 ⊢ (⊤ → ℑ = (𝑧 ∈ ℂ ↦ (ℑ‘𝑧))) |
46 | imcncf 13368 | . . . . . . 7 ⊢ ℑ ∈ (ℂ–cn→ℝ) | |
47 | 46, 40 | eleqtri 2245 | . . . . . 6 ⊢ ℑ ∈ (𝐾 Cn 𝐽) |
48 | 45, 47 | eqeltrrdi 2262 | . . . . 5 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ (ℑ‘𝑧)) ∈ (𝐾 Cn 𝐽)) |
49 | 17, 42, 48 | cnmpt1t 13079 | . . . 4 ⊢ (⊤ → (𝑧 ∈ ℂ ↦ 〈(ℜ‘𝑧), (ℑ‘𝑧)〉) ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
50 | 31, 49 | eqeltrid 2257 | . . 3 ⊢ (⊤ → ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽))) |
51 | ishmeo 13098 | . . 3 ⊢ (𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) ↔ (𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn (𝐽 ×t 𝐽)))) | |
52 | 30, 50, 51 | sylanbrc 415 | . 2 ⊢ (⊤ → 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)) |
53 | 52 | mptru 1357 | 1 ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 ⊆ wss 3121 〈cop 3586 ↦ cmpt 4050 ◡ccnv 4610 ran crn 4612 ∘ ccom 4615 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ∈ cmpo 5855 ℂcc 7772 ℝcr 7773 ici 7776 + caddc 7777 · cmul 7779 − cmin 8090 (,)cioo 9845 ℜcre 10804 ℑcim 10805 abscabs 10961 ↾t crest 12579 topGenctg 12594 MetOpencmopn 12779 Topctop 12789 TopOnctopon 12802 Cn ccn 12979 ×t ctx 13046 Homeochmeo 13094 –cn→ccncf 13351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 ax-addf 7896 ax-mulf 7897 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-map 6628 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-ioo 9849 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-cn 12982 df-cnp 12983 df-tx 13047 df-hmeo 13095 df-cncf 13352 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |