Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > fmelpw1o | GIF version |
Description: With a formula 𝜑 one can
associate an element of 𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 841, which translate to 1o and ∅
respectively by iftrue 3525
and iffalse 3528, giving pwtrufal 13877).
As proved in if0ab 13687, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
fmelpw1o | ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6392 | . . 3 ⊢ 1o ∈ V | |
2 | 0ex 4109 | . . 3 ⊢ ∅ ∈ V | |
3 | 1, 2 | ifelpwun 4461 | . 2 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅) |
4 | un0 3442 | . . 3 ⊢ (1o ∪ ∅) = 1o | |
5 | 4 | pweqi 3563 | . 2 ⊢ 𝒫 (1o ∪ ∅) = 𝒫 1o |
6 | 3, 5 | eleqtri 2241 | 1 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 ∪ cun 3114 ∅c0 3409 ifcif 3520 𝒫 cpw 3559 1oc1o 6377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-1o 6384 |
This theorem is referenced by: bj-charfun 13689 |
Copyright terms: Public domain | W3C validator |