![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > fmelpw1o | GIF version |
Description: With a formula 𝜑 one can
associate an element of 𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 852, which translate to 1o and ∅
respectively by iftrue 3562
and iffalse 3565, giving pwtrufal 15488).
As proved in if0ab 15297, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
fmelpw1o | ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6477 | . . 3 ⊢ 1o ∈ V | |
2 | 0ex 4156 | . . 3 ⊢ ∅ ∈ V | |
3 | 1, 2 | ifelpwun 4514 | . 2 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅) |
4 | un0 3480 | . . 3 ⊢ (1o ∪ ∅) = 1o | |
5 | 4 | pweqi 3605 | . 2 ⊢ 𝒫 (1o ∪ ∅) = 𝒫 1o |
6 | 3, 5 | eleqtri 2268 | 1 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 ∪ cun 3151 ∅c0 3446 ifcif 3557 𝒫 cpw 3601 1oc1o 6462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-uni 3836 df-tr 4128 df-iord 4397 df-on 4399 df-suc 4402 df-1o 6469 |
This theorem is referenced by: bj-charfun 15299 |
Copyright terms: Public domain | W3C validator |