Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fmelpw1o GIF version

Theorem fmelpw1o 15298
Description: With a formula 𝜑 one can associate an element of 𝒫 1o, which can therefore be thought of as the set of "truth values" (but recall that there are no other genuine truth values than and , by nndc 852, which translate to 1o and respectively by iftrue 3562 and iffalse 3565, giving pwtrufal 15488).

As proved in if0ab 15297, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.)

Assertion
Ref Expression
fmelpw1o if(𝜑, 1o, ∅) ∈ 𝒫 1o

Proof of Theorem fmelpw1o
StepHypRef Expression
1 1oex 6477 . . 3 1o ∈ V
2 0ex 4156 . . 3 ∅ ∈ V
31, 2ifelpwun 4514 . 2 if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅)
4 un0 3480 . . 3 (1o ∪ ∅) = 1o
54pweqi 3605 . 2 𝒫 (1o ∪ ∅) = 𝒫 1o
63, 5eleqtri 2268 1 if(𝜑, 1o, ∅) ∈ 𝒫 1o
Colors of variables: wff set class
Syntax hints:  wcel 2164  cun 3151  c0 3446  ifcif 3557  𝒫 cpw 3601  1oc1o 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-1o 6469
This theorem is referenced by:  bj-charfun  15299
  Copyright terms: Public domain W3C validator