![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > fmelpw1o | GIF version |
Description: With a formula 𝜑 one can
associate an element of 𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 851, which translate to 1o and ∅
respectively by iftrue 3541
and iffalse 3544, giving pwtrufal 14832).
As proved in if0ab 14642, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
fmelpw1o | ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6427 | . . 3 ⊢ 1o ∈ V | |
2 | 0ex 4132 | . . 3 ⊢ ∅ ∈ V | |
3 | 1, 2 | ifelpwun 4485 | . 2 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅) |
4 | un0 3458 | . . 3 ⊢ (1o ∪ ∅) = 1o | |
5 | 4 | pweqi 3581 | . 2 ⊢ 𝒫 (1o ∪ ∅) = 𝒫 1o |
6 | 3, 5 | eleqtri 2252 | 1 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 ∪ cun 3129 ∅c0 3424 ifcif 3536 𝒫 cpw 3577 1oc1o 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-uni 3812 df-tr 4104 df-iord 4368 df-on 4370 df-suc 4373 df-1o 6419 |
This theorem is referenced by: bj-charfun 14644 |
Copyright terms: Public domain | W3C validator |