| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmelpw1o | GIF version | ||
| Description: With a formula 𝜑 one can
associate an element of 𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 853, which translate to 1o and ∅
respectively by iftrue 3580
and iffalse 3583, giving pwtrufal 16075).
As proved in if0ab 15880, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| fmelpw1o | ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6523 | . . 3 ⊢ 1o ∈ V | |
| 2 | 0ex 4179 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | ifelpwun 4538 | . 2 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅) |
| 4 | un0 3498 | . . 3 ⊢ (1o ∪ ∅) = 1o | |
| 5 | 4 | pweqi 3625 | . 2 ⊢ 𝒫 (1o ∪ ∅) = 𝒫 1o |
| 6 | 3, 5 | eleqtri 2281 | 1 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ∪ cun 3168 ∅c0 3464 ifcif 3575 𝒫 cpw 3621 1oc1o 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 df-1o 6515 |
| This theorem is referenced by: bj-charfun 15881 pw1map 16073 |
| Copyright terms: Public domain | W3C validator |