Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  fmelpw1o GIF version

Theorem fmelpw1o 15016
Description: With a formula 𝜑 one can associate an element of 𝒫 1o, which can therefore be thought of as the set of "truth values" (but recall that there are no other genuine truth values than and , by nndc 852, which translate to 1o and respectively by iftrue 3554 and iffalse 3557, giving pwtrufal 15206).

As proved in if0ab 15015, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.)

Assertion
Ref Expression
fmelpw1o if(𝜑, 1o, ∅) ∈ 𝒫 1o

Proof of Theorem fmelpw1o
StepHypRef Expression
1 1oex 6449 . . 3 1o ∈ V
2 0ex 4145 . . 3 ∅ ∈ V
31, 2ifelpwun 4501 . 2 if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅)
4 un0 3471 . . 3 (1o ∪ ∅) = 1o
54pweqi 3594 . 2 𝒫 (1o ∪ ∅) = 𝒫 1o
63, 5eleqtri 2264 1 if(𝜑, 1o, ∅) ∈ 𝒫 1o
Colors of variables: wff set class
Syntax hints:  wcel 2160  cun 3142  c0 3437  ifcif 3549  𝒫 cpw 3590  1oc1o 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-uni 3825  df-tr 4117  df-iord 4384  df-on 4386  df-suc 4389  df-1o 6441
This theorem is referenced by:  bj-charfun  15017
  Copyright terms: Public domain W3C validator