| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > fmelpw1o | GIF version | ||
| Description: With a formula 𝜑 one can
associate an element of 𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 852, which translate to 1o and ∅
respectively by iftrue 3567
and iffalse 3570, giving pwtrufal 15728).
As proved in if0ab 15535, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| fmelpw1o | ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6491 | . . 3 ⊢ 1o ∈ V | |
| 2 | 0ex 4161 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | ifelpwun 4519 | . 2 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅) |
| 4 | un0 3485 | . . 3 ⊢ (1o ∪ ∅) = 1o | |
| 5 | 4 | pweqi 3610 | . 2 ⊢ 𝒫 (1o ∪ ∅) = 𝒫 1o |
| 6 | 3, 5 | eleqtri 2271 | 1 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ∪ cun 3155 ∅c0 3451 ifcif 3562 𝒫 cpw 3606 1oc1o 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-1o 6483 |
| This theorem is referenced by: bj-charfun 15537 |
| Copyright terms: Public domain | W3C validator |