| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fmelpw1o | GIF version | ||
| Description: With a formula 𝜑 one can
associate an element of 𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 856, which translate to 1o and ∅
respectively by iftrue 3607
and iffalse 3610, giving pwtrufal 16322).
As proved in if0ab 16127, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| fmelpw1o | ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 6568 | . . 3 ⊢ 1o ∈ V | |
| 2 | 0ex 4210 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | ifelpwun 4573 | . 2 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅) |
| 4 | un0 3525 | . . 3 ⊢ (1o ∪ ∅) = 1o | |
| 5 | 4 | pweqi 3653 | . 2 ⊢ 𝒫 (1o ∪ ∅) = 𝒫 1o |
| 6 | 3, 5 | eleqtri 2304 | 1 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ∪ cun 3195 ∅c0 3491 ifcif 3602 𝒫 cpw 3649 1oc1o 6553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 df-suc 4461 df-1o 6560 |
| This theorem is referenced by: bj-charfun 16128 pw1map 16320 |
| Copyright terms: Public domain | W3C validator |