![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > fmelpw1o | GIF version |
Description: With a formula 𝜑 one can
associate an element of 𝒫 1o, which
can therefore be thought of as the set of "truth values" (but
recall that
there are no other genuine truth values than ⊤ and ⊥, by
nndc 852, which translate to 1o and ∅
respectively by iftrue 3554
and iffalse 3557, giving pwtrufal 15206).
As proved in if0ab 15015, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
fmelpw1o | ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 6449 | . . 3 ⊢ 1o ∈ V | |
2 | 0ex 4145 | . . 3 ⊢ ∅ ∈ V | |
3 | 1, 2 | ifelpwun 4501 | . 2 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅) |
4 | un0 3471 | . . 3 ⊢ (1o ∪ ∅) = 1o | |
5 | 4 | pweqi 3594 | . 2 ⊢ 𝒫 (1o ∪ ∅) = 𝒫 1o |
6 | 3, 5 | eleqtri 2264 | 1 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 ∪ cun 3142 ∅c0 3437 ifcif 3549 𝒫 cpw 3590 1oc1o 6434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-uni 3825 df-tr 4117 df-iord 4384 df-on 4386 df-suc 4389 df-1o 6441 |
This theorem is referenced by: bj-charfun 15017 |
Copyright terms: Public domain | W3C validator |