ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fmelpw1o GIF version

Theorem fmelpw1o 7428
Description: With a formula 𝜑 one can associate an element of 𝒫 1o, which can therefore be thought of as the set of "truth values" (but recall that there are no other genuine truth values than and , by nndc 856, which translate to 1o and respectively by iftrue 3607 and iffalse 3610, giving pwtrufal 16322).

As proved in if0ab 16127, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.)

Assertion
Ref Expression
fmelpw1o if(𝜑, 1o, ∅) ∈ 𝒫 1o

Proof of Theorem fmelpw1o
StepHypRef Expression
1 1oex 6568 . . 3 1o ∈ V
2 0ex 4210 . . 3 ∅ ∈ V
31, 2ifelpwun 4573 . 2 if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅)
4 un0 3525 . . 3 (1o ∪ ∅) = 1o
54pweqi 3653 . 2 𝒫 (1o ∪ ∅) = 𝒫 1o
63, 5eleqtri 2304 1 if(𝜑, 1o, ∅) ∈ 𝒫 1o
Colors of variables: wff set class
Syntax hints:  wcel 2200  cun 3195  c0 3491  ifcif 3602  𝒫 cpw 3649  1oc1o 6553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-1o 6560
This theorem is referenced by:  bj-charfun  16128  pw1map  16320
  Copyright terms: Public domain W3C validator