| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > fmelpw1o | GIF version | ||
| Description: With a formula 𝜑 one can
associate an element of 𝒫 1o, which
     can therefore be thought of as the set of "truth values" (but
recall that
     there are no other genuine truth values than ⊤ and ⊥, by
     nndc 852, which translate to 1o and ∅
respectively by iftrue 3566
     and iffalse 3569, giving pwtrufal 15642).
 As proved in if0ab 15451, the associated element of 𝒫 1o is the extension, in 𝒫 1o, of the formula 𝜑. (Contributed by BJ, 15-Aug-2024.)  | 
| Ref | Expression | 
|---|---|
| fmelpw1o | ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1oex 6482 | . . 3 ⊢ 1o ∈ V | |
| 2 | 0ex 4160 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 1, 2 | ifelpwun 4518 | . 2 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 (1o ∪ ∅) | 
| 4 | un0 3484 | . . 3 ⊢ (1o ∪ ∅) = 1o | |
| 5 | 4 | pweqi 3609 | . 2 ⊢ 𝒫 (1o ∪ ∅) = 𝒫 1o | 
| 6 | 3, 5 | eleqtri 2271 | 1 ⊢ if(𝜑, 1o, ∅) ∈ 𝒫 1o | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 ∪ cun 3155 ∅c0 3450 ifcif 3561 𝒫 cpw 3605 1oc1o 6467 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 | 
| This theorem is referenced by: bj-charfun 15453 | 
| Copyright terms: Public domain | W3C validator |