| Step | Hyp | Ref
| Expression |
| 1 | | rpcn 9737 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℂ) |
| 2 | | 1e0p1 9498 |
. . . . 5
⊢ 1 = (0 +
1) |
| 3 | 2 | fveq2i 5561 |
. . . 4
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(0 + 1)) |
| 4 | | 0nn0 9264 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
| 5 | | nn0uz 9636 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
| 6 | 4, 5 | eleqtri 2271 |
. . . . . . 7
⊢ 0 ∈
(ℤ≥‘0) |
| 7 | 6 | a1i 9 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → 0 ∈
(ℤ≥‘0)) |
| 8 | | elnn0uz 9639 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
| 9 | | eqid 2196 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| 10 | 9 | eftvalcn 11822 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 11 | | eftcl 11819 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 12 | 10, 11 | eqeltrd 2273 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
| 13 | 8, 12 | sylan2br 288 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
| 14 | | addcl 8004 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ) |
| 15 | 14 | adantl 277 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ) |
| 16 | 7, 13, 15 | seq3p1 10557 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(0 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1)))) |
| 17 | | 0zd 9338 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → 0 ∈
ℤ) |
| 18 | 17, 13, 15 | seq3-1 10554 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0)) |
| 19 | 9 | eftvalcn 11822 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
| 20 | 4, 19 | mpan2 425 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
| 21 | | eft0val 11858 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) =
1) |
| 22 | 20, 21 | eqtrd 2229 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = 1) |
| 23 | 18, 22 | eqtrd 2229 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = 1) |
| 24 | 2 | fveq2i 5561 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1)) |
| 25 | | 1nn0 9265 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
| 26 | 9 | eftvalcn 11822 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
| 27 | 25, 26 | mpan2 425 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
| 28 | | fac1 10821 |
. . . . . . . . . 10
⊢
(!‘1) = 1 |
| 29 | 28 | oveq2i 5933 |
. . . . . . . . 9
⊢ ((𝐴↑1) / (!‘1)) =
((𝐴↑1) /
1) |
| 30 | | exp1 10637 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
| 31 | 30 | oveq1d 5937 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1)) |
| 32 | | div1 8730 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) |
| 33 | 31, 32 | eqtrd 2229 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴) |
| 34 | 29, 33 | eqtrid 2241 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
| 35 | 27, 34 | eqtrd 2229 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
| 36 | 24, 35 | eqtr3id 2243 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1)) = 𝐴) |
| 37 | 23, 36 | oveq12d 5940 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1))) = (1 + 𝐴)) |
| 38 | 16, 37 | eqtrd 2229 |
. . . 4
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(0 + 1)) = (1 + 𝐴)) |
| 39 | 3, 38 | eqtrid 2241 |
. . 3
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
| 40 | 1, 39 | syl 14 |
. 2
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
| 41 | | id 19 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ+) |
| 42 | 25 | a1i 9 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ 1 ∈ ℕ0) |
| 43 | 9, 41, 42 | effsumlt 11857 |
. 2
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴)) |
| 44 | 40, 43 | eqbrtrrd 4057 |
1
⊢ (𝐴 ∈ ℝ+
→ (1 + 𝐴) <
(exp‘𝐴)) |