ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p GIF version

Theorem efgt1p 11718
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
efgt1p (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))

Proof of Theorem efgt1p
Dummy variables 𝑘 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 9676 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
2 1e0p1 9439 . . . . 5 1 = (0 + 1)
32fveq2i 5530 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1))
4 0nn0 9205 . . . . . . . 8 0 ∈ ℕ0
5 nn0uz 9576 . . . . . . . 8 0 = (ℤ‘0)
64, 5eleqtri 2262 . . . . . . 7 0 ∈ (ℤ‘0)
76a1i 9 . . . . . 6 (𝐴 ∈ ℂ → 0 ∈ (ℤ‘0))
8 elnn0uz 9579 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
9 eqid 2187 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
109eftvalcn 11679 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
11 eftcl 11676 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1210, 11eqeltrd 2264 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
138, 12sylan2br 288 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
14 addcl 7950 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ)
1514adantl 277 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ)
167, 13, 15seq3p1 10476 . . . . 5 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))))
17 0zd 9279 . . . . . . . 8 (𝐴 ∈ ℂ → 0 ∈ ℤ)
1817, 13, 15seq3-1 10474 . . . . . . 7 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0))
199eftvalcn 11679 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
204, 19mpan2 425 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
21 eft0val 11715 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
2220, 21eqtrd 2220 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
2318, 22eqtrd 2220 . . . . . 6 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
242fveq2i 5530 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))
25 1nn0 9206 . . . . . . . . 9 1 ∈ ℕ0
269eftvalcn 11679 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
2725, 26mpan2 425 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
28 fac1 10723 . . . . . . . . . 10 (!‘1) = 1
2928oveq2i 5899 . . . . . . . . 9 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
30 exp1 10540 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
3130oveq1d 5903 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
32 div1 8674 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
3331, 32eqtrd 2220 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
3429, 33eqtrid 2232 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
3527, 34eqtrd 2220 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
3624, 35eqtr3id 2234 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1)) = 𝐴)
3723, 36oveq12d 5906 . . . . 5 (𝐴 ∈ ℂ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))) = (1 + 𝐴))
3816, 37eqtrd 2220 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1)) = (1 + 𝐴))
393, 38eqtrid 2232 . . 3 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
401, 39syl 14 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
41 id 19 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
4225a1i 9 . . 3 (𝐴 ∈ ℝ+ → 1 ∈ ℕ0)
439, 41, 42effsumlt 11714 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴))
4440, 43eqbrtrrd 4039 1 (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1363  wcel 2158   class class class wbr 4015  cmpt 4076  cfv 5228  (class class class)co 5888  cc 7823  0cc0 7825  1c1 7826   + caddc 7828   < clt 8006   / cdiv 8643  0cn0 9190  cuz 9542  +crp 9667  seqcseq 10459  cexp 10533  !cfa 10719  expce 11664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-irdg 6385  df-frec 6406  df-1o 6431  df-oadd 6435  df-er 6549  df-en 6755  df-dom 6756  df-fin 6757  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-ico 9908  df-fz 10023  df-fzo 10157  df-seqfrec 10460  df-exp 10534  df-fac 10720  df-ihash 10770  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-clim 11301  df-sumdc 11376  df-ef 11670
This theorem is referenced by:  efgt1  11719  reeff1olem  14488  logdivlti  14598
  Copyright terms: Public domain W3C validator