Step | Hyp | Ref
| Expression |
1 | | rpcn 9598 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℂ) |
2 | | 1e0p1 9363 |
. . . . 5
⊢ 1 = (0 +
1) |
3 | 2 | fveq2i 5489 |
. . . 4
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(0 + 1)) |
4 | | 0nn0 9129 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
5 | | nn0uz 9500 |
. . . . . . . 8
⊢
ℕ0 = (ℤ≥‘0) |
6 | 4, 5 | eleqtri 2241 |
. . . . . . 7
⊢ 0 ∈
(ℤ≥‘0) |
7 | 6 | a1i 9 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → 0 ∈
(ℤ≥‘0)) |
8 | | elnn0uz 9503 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
9 | | eqid 2165 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
10 | 9 | eftvalcn 11598 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
11 | | eftcl 11595 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
12 | 10, 11 | eqeltrd 2243 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
13 | 8, 12 | sylan2br 286 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ) |
14 | | addcl 7878 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ) |
15 | 14 | adantl 275 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ) |
16 | 7, 13, 15 | seq3p1 10397 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(0 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1)))) |
17 | | 0zd 9203 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → 0 ∈
ℤ) |
18 | 17, 13, 15 | seq3-1 10395 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0)) |
19 | 9 | eftvalcn 11598 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
20 | 4, 19 | mpan2 422 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
21 | | eft0val 11634 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) =
1) |
22 | 20, 21 | eqtrd 2198 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = 1) |
23 | 18, 22 | eqtrd 2198 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = 1) |
24 | 2 | fveq2i 5489 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1)) |
25 | | 1nn0 9130 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
26 | 9 | eftvalcn 11598 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
27 | 25, 26 | mpan2 422 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
28 | | fac1 10642 |
. . . . . . . . . 10
⊢
(!‘1) = 1 |
29 | 28 | oveq2i 5853 |
. . . . . . . . 9
⊢ ((𝐴↑1) / (!‘1)) =
((𝐴↑1) /
1) |
30 | | exp1 10461 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
31 | 30 | oveq1d 5857 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1)) |
32 | | div1 8599 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) |
33 | 31, 32 | eqtrd 2198 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴) |
34 | 29, 33 | syl5eq 2211 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
35 | 27, 34 | eqtrd 2198 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
36 | 24, 35 | eqtr3id 2213 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1)) = 𝐴) |
37 | 23, 36 | oveq12d 5860 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1))) = (1 + 𝐴)) |
38 | 16, 37 | eqtrd 2198 |
. . . 4
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(0 + 1)) = (1 + 𝐴)) |
39 | 3, 38 | syl5eq 2211 |
. . 3
⊢ (𝐴 ∈ ℂ → (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
40 | 1, 39 | syl 14 |
. 2
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
41 | | id 19 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ+) |
42 | 25 | a1i 9 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ 1 ∈ ℕ0) |
43 | 9, 41, 42 | effsumlt 11633 |
. 2
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴)) |
44 | 40, 43 | eqbrtrrd 4006 |
1
⊢ (𝐴 ∈ ℝ+
→ (1 + 𝐴) <
(exp‘𝐴)) |