ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p GIF version

Theorem efgt1p 11703
Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by Mario Carneiro, 30-Apr-2014.)
Assertion
Ref Expression
efgt1p (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))

Proof of Theorem efgt1p
Dummy variables 𝑘 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rpcn 9661 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
2 1e0p1 9424 . . . . 5 1 = (0 + 1)
32fveq2i 5518 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1))
4 0nn0 9190 . . . . . . . 8 0 ∈ ℕ0
5 nn0uz 9561 . . . . . . . 8 0 = (ℤ‘0)
64, 5eleqtri 2252 . . . . . . 7 0 ∈ (ℤ‘0)
76a1i 9 . . . . . 6 (𝐴 ∈ ℂ → 0 ∈ (ℤ‘0))
8 elnn0uz 9564 . . . . . . 7 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
9 eqid 2177 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
109eftvalcn 11664 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
11 eftcl 11661 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1210, 11eqeltrd 2254 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
138, 12sylan2br 288 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℂ)
14 addcl 7935 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ)
1514adantl 277 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ)
167, 13, 15seq3p1 10461 . . . . 5 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))))
17 0zd 9264 . . . . . . . 8 (𝐴 ∈ ℂ → 0 ∈ ℤ)
1817, 13, 15seq3-1 10459 . . . . . . 7 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0))
199eftvalcn 11664 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
204, 19mpan2 425 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
21 eft0val 11700 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
2220, 21eqtrd 2210 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
2318, 22eqtrd 2210 . . . . . 6 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
242fveq2i 5518 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))
25 1nn0 9191 . . . . . . . . 9 1 ∈ ℕ0
269eftvalcn 11664 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
2725, 26mpan2 425 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
28 fac1 10708 . . . . . . . . . 10 (!‘1) = 1
2928oveq2i 5885 . . . . . . . . 9 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
30 exp1 10525 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
3130oveq1d 5889 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
32 div1 8659 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
3331, 32eqtrd 2210 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
3429, 33eqtrid 2222 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
3527, 34eqtrd 2210 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
3624, 35eqtr3id 2224 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1)) = 𝐴)
3723, 36oveq12d 5892 . . . . 5 (𝐴 ∈ ℂ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))) = (1 + 𝐴))
3816, 37eqtrd 2210 . . . 4 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1)) = (1 + 𝐴))
393, 38eqtrid 2222 . . 3 (𝐴 ∈ ℂ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
401, 39syl 14 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
41 id 19 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
4225a1i 9 . . 3 (𝐴 ∈ ℝ+ → 1 ∈ ℕ0)
439, 41, 42effsumlt 11699 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) < (exp‘𝐴))
4440, 43eqbrtrrd 4027 1 (𝐴 ∈ ℝ+ → (1 + 𝐴) < (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148   class class class wbr 4003  cmpt 4064  cfv 5216  (class class class)co 5874  cc 7808  0cc0 7810  1c1 7811   + caddc 7813   < clt 7991   / cdiv 8628  0cn0 9175  cuz 9527  +crp 9652  seqcseq 10444  cexp 10518  !cfa 10704  expce 11649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-isom 5225  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-frec 6391  df-1o 6416  df-oadd 6420  df-er 6534  df-en 6740  df-dom 6741  df-fin 6742  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-3 8978  df-4 8979  df-n0 9176  df-z 9253  df-uz 9528  df-q 9619  df-rp 9653  df-ico 9893  df-fz 10008  df-fzo 10142  df-seqfrec 10445  df-exp 10519  df-fac 10705  df-ihash 10755  df-cj 10850  df-re 10851  df-im 10852  df-rsqrt 11006  df-abs 11007  df-clim 11286  df-sumdc 11361  df-ef 11655
This theorem is referenced by:  efgt1  11704  reeff1olem  14162  logdivlti  14272
  Copyright terms: Public domain W3C validator