Step | Hyp | Ref
| Expression |
1 | | 1nn0 9130 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
2 | | nn0uz 9500 |
. . . . . . 7
⊢
ℕ0 = (ℤ≥‘0) |
3 | 1, 2 | eleqtri 2241 |
. . . . . 6
⊢ 1 ∈
(ℤ≥‘0) |
4 | 3 | a1i 9 |
. . . . 5
⊢ (𝐴 ∈ ℝ+
→ 1 ∈ (ℤ≥‘0)) |
5 | | elnn0uz 9503 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
6 | 5 | biimpri 132 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ ℕ0) |
7 | 6 | adantl 275 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝑘 ∈
(ℤ≥‘0)) → 𝑘 ∈ ℕ0) |
8 | | simpl 108 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 𝑘 ∈
(ℤ≥‘0)) → 𝐴 ∈
ℝ+) |
9 | | eluzelz 9475 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ ℤ) |
10 | 9 | adantl 275 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 𝑘 ∈
(ℤ≥‘0)) → 𝑘 ∈ ℤ) |
11 | 8, 10 | rpexpcld 10612 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 𝑘 ∈
(ℤ≥‘0)) → (𝐴↑𝑘) ∈
ℝ+) |
12 | 7 | faccld 10649 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 𝑘 ∈
(ℤ≥‘0)) → (!‘𝑘) ∈ ℕ) |
13 | 12 | nnrpd 9630 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 𝑘 ∈
(ℤ≥‘0)) → (!‘𝑘) ∈
ℝ+) |
14 | 11, 13 | rpdivcld 9650 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝐴↑𝑘) / (!‘𝑘)) ∈
ℝ+) |
15 | | oveq2 5850 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
16 | | fveq2 5486 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘)) |
17 | 15, 16 | oveq12d 5860 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((𝐴↑𝑛) / (!‘𝑛)) = ((𝐴↑𝑘) / (!‘𝑘))) |
18 | | eqid 2165 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
19 | 17, 18 | fvmptg 5562 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℝ+) → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
20 | 7, 14, 19 | syl2anc 409 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
21 | 20, 14 | eqeltrd 2243 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 𝑘 ∈
(ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘𝑘) ∈
ℝ+) |
22 | | rpaddcl 9613 |
. . . . . 6
⊢ ((𝑘 ∈ ℝ+
∧ 𝑦 ∈
ℝ+) → (𝑘 + 𝑦) ∈
ℝ+) |
23 | 22 | adantl 275 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ (𝑘 ∈
ℝ+ ∧ 𝑦
∈ ℝ+)) → (𝑘 + 𝑦) ∈
ℝ+) |
24 | 4, 21, 23 | seq3p1 10397 |
. . . 4
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(1 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(1 + 1)))) |
25 | | df-2 8916 |
. . . . 5
⊢ 2 = (1 +
1) |
26 | 25 | fveq2i 5489 |
. . . 4
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) = (seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(1 + 1)) |
27 | 25 | fveq2i 5489 |
. . . . 5
⊢ ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(1 + 1)) |
28 | 27 | oveq2i 5853 |
. . . 4
⊢ ((seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2)) = ((seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(1 + 1))) |
29 | 24, 26, 28 | 3eqtr4g 2224 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) = ((seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2))) |
30 | | 0nn0 9129 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
31 | 30, 2 | eleqtri 2241 |
. . . . . . . 8
⊢ 0 ∈
(ℤ≥‘0) |
32 | 31 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ 0 ∈ (ℤ≥‘0)) |
33 | 32, 21, 23 | seq3p1 10397 |
. . . . . 6
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(0 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1)))) |
34 | | 1e0p1 9363 |
. . . . . . 7
⊢ 1 = (0 +
1) |
35 | 34 | fveq2i 5489 |
. . . . . 6
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘(0 + 1)) |
36 | 34 | fveq2i 5489 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1)) |
37 | 36 | oveq2i 5853 |
. . . . . 6
⊢ ((seq0( +
, (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1)) = ((seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘(0 + 1))) |
38 | 33, 35, 37 | 3eqtr4g 2224 |
. . . . 5
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = ((seq0( + , (𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1))) |
39 | | 0zd 9203 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ 0 ∈ ℤ) |
40 | 39, 21, 23 | seq3-1 10395 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0)) |
41 | | rpcn 9598 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℂ) |
42 | 18 | eftvalcn 11598 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
43 | 30, 42 | mpan2 422 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
44 | 41, 43 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0))) |
45 | | eft0val 11634 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) =
1) |
46 | 41, 45 | syl 14 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ+
→ ((𝐴↑0) /
(!‘0)) = 1) |
47 | 44, 46 | eqtrd 2198 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘0) = 1) |
48 | 40, 47 | eqtrd 2198 |
. . . . . 6
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) = 1) |
49 | 18 | eftvalcn 11598 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
50 | 1, 49 | mpan2 422 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1))) |
51 | | fac1 10642 |
. . . . . . . . . 10
⊢
(!‘1) = 1 |
52 | 51 | oveq2i 5853 |
. . . . . . . . 9
⊢ ((𝐴↑1) / (!‘1)) =
((𝐴↑1) /
1) |
53 | | exp1 10461 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴) |
54 | 53 | oveq1d 5857 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1)) |
55 | | div1 8599 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) |
56 | 54, 55 | eqtrd 2198 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴) |
57 | 52, 56 | syl5eq 2211 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴) |
58 | 50, 57 | eqtrd 2198 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
59 | 41, 58 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ ℝ+
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1) = 𝐴) |
60 | 48, 59 | oveq12d 5860 |
. . . . 5
⊢ (𝐴 ∈ ℝ+
→ ((seq0( + , (𝑛
∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘1)) = (1 + 𝐴)) |
61 | 38, 60 | eqtrd 2198 |
. . . 4
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴)) |
62 | | 2nn0 9131 |
. . . . . . 7
⊢ 2 ∈
ℕ0 |
63 | 18 | eftvalcn 11598 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 2 ∈
ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))) |
64 | 62, 63 | mpan2 422 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2))) |
65 | | fac2 10644 |
. . . . . . 7
⊢
(!‘2) = 2 |
66 | 65 | oveq2i 5853 |
. . . . . 6
⊢ ((𝐴↑2) / (!‘2)) =
((𝐴↑2) /
2) |
67 | 64, 66 | eqtrdi 2215 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0
↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)) |
68 | 41, 67 | syl 14 |
. . . 4
⊢ (𝐴 ∈ ℝ+
→ ((𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2)) |
69 | 61, 68 | oveq12d 5860 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ ((seq0( + , (𝑛
∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛)))‘2)) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
70 | 29, 69 | eqtrd 2198 |
. 2
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2))) |
71 | | id 19 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ+) |
72 | 62 | a1i 9 |
. . 3
⊢ (𝐴 ∈ ℝ+
→ 2 ∈ ℕ0) |
73 | 18, 71, 72 | effsumlt 11633 |
. 2
⊢ (𝐴 ∈ ℝ+
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴)) |
74 | 70, 73 | eqbrtrrd 4006 |
1
⊢ (𝐴 ∈ ℝ+
→ ((1 + 𝐴) + ((𝐴↑2) / 2)) <
(exp‘𝐴)) |