ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p2 GIF version

Theorem efgt1p2 12039
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))

Proof of Theorem efgt1p2
Dummy variables 𝑘 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 9313 . . . . . . 7 1 ∈ ℕ0
2 nn0uz 9685 . . . . . . 7 0 = (ℤ‘0)
31, 2eleqtri 2280 . . . . . 6 1 ∈ (ℤ‘0)
43a1i 9 . . . . 5 (𝐴 ∈ ℝ+ → 1 ∈ (ℤ‘0))
5 elnn0uz 9688 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
65biimpri 133 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
76adantl 277 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
8 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝐴 ∈ ℝ+)
9 eluzelz 9659 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℤ)
109adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℤ)
118, 10rpexpcld 10844 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (𝐴𝑘) ∈ ℝ+)
127faccld 10883 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (!‘𝑘) ∈ ℕ)
1312nnrpd 9818 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (!‘𝑘) ∈ ℝ+)
1411, 13rpdivcld 9838 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+)
15 oveq2 5954 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
16 fveq2 5578 . . . . . . . . 9 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
1715, 16oveq12d 5964 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐴𝑛) / (!‘𝑛)) = ((𝐴𝑘) / (!‘𝑘)))
18 eqid 2205 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1917, 18fvmptg 5657 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
207, 14, 19syl2anc 411 . . . . . 6 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2120, 14eqeltrd 2282 . . . . 5 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℝ+)
22 rpaddcl 9801 . . . . . 6 ((𝑘 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑘 + 𝑦) ∈ ℝ+)
2322adantl 277 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (𝑘 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑘 + 𝑦) ∈ ℝ+)
244, 21, 23seq3p1 10612 . . . 4 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(1 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1))))
25 df-2 9097 . . . . 5 2 = (1 + 1)
2625fveq2i 5581 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(1 + 1))
2725fveq2i 5581 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1))
2827oveq2i 5957 . . . 4 ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1)))
2924, 26, 283eqtr4g 2263 . . 3 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)))
30 0nn0 9312 . . . . . . . . 9 0 ∈ ℕ0
3130, 2eleqtri 2280 . . . . . . . 8 0 ∈ (ℤ‘0)
3231a1i 9 . . . . . . 7 (𝐴 ∈ ℝ+ → 0 ∈ (ℤ‘0))
3332, 21, 23seq3p1 10612 . . . . . 6 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))))
34 1e0p1 9547 . . . . . . 7 1 = (0 + 1)
3534fveq2i 5581 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1))
3634fveq2i 5581 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))
3736oveq2i 5957 . . . . . 6 ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1)))
3833, 35, 373eqtr4g 2263 . . . . 5 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)))
39 0zd 9386 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 ∈ ℤ)
4039, 21, 23seq3-1 10609 . . . . . . 7 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0))
41 rpcn 9786 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4218eftvalcn 12001 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
4330, 42mpan2 425 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
4441, 43syl 14 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
45 eft0val 12037 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
4641, 45syl 14 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝐴↑0) / (!‘0)) = 1)
4744, 46eqtrd 2238 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
4840, 47eqtrd 2238 . . . . . 6 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
4918eftvalcn 12001 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
501, 49mpan2 425 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
51 fac1 10876 . . . . . . . . . 10 (!‘1) = 1
5251oveq2i 5957 . . . . . . . . 9 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
53 exp1 10692 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
5453oveq1d 5961 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
55 div1 8778 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
5654, 55eqtrd 2238 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
5752, 56eqtrid 2250 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
5850, 57eqtrd 2238 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
5941, 58syl 14 . . . . . 6 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
6048, 59oveq12d 5964 . . . . 5 (𝐴 ∈ ℝ+ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)) = (1 + 𝐴))
6138, 60eqtrd 2238 . . . 4 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
62 2nn0 9314 . . . . . . 7 2 ∈ ℕ0
6318eftvalcn 12001 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
6462, 63mpan2 425 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
65 fac2 10878 . . . . . . 7 (!‘2) = 2
6665oveq2i 5957 . . . . . 6 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
6764, 66eqtrdi 2254 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
6841, 67syl 14 . . . 4 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
6961, 68oveq12d 5964 . . 3 (𝐴 ∈ ℝ+ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
7029, 69eqtrd 2238 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
71 id 19 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
7262a1i 9 . . 3 (𝐴 ∈ ℝ+ → 2 ∈ ℕ0)
7318, 71, 72effsumlt 12036 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴))
7470, 73eqbrtrrd 4069 1 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176   class class class wbr 4045  cmpt 4106  cfv 5272  (class class class)co 5946  cc 7925  0cc0 7927  1c1 7928   + caddc 7930   < clt 8109   / cdiv 8747  2c2 9089  0cn0 9297  cz 9374  cuz 9650  +crp 9777  seqcseq 10594  cexp 10685  !cfa 10872  expce 11986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-ico 10018  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698  df-ef 11992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator