ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p2 GIF version

Theorem efgt1p2 11300
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))

Proof of Theorem efgt1p2
Dummy variables 𝑘 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 8944 . . . . . . 7 1 ∈ ℕ0
2 nn0uz 9309 . . . . . . 7 0 = (ℤ‘0)
31, 2eleqtri 2190 . . . . . 6 1 ∈ (ℤ‘0)
43a1i 9 . . . . 5 (𝐴 ∈ ℝ+ → 1 ∈ (ℤ‘0))
5 elnn0uz 9312 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
65biimpri 132 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
76adantl 273 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
8 simpl 108 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝐴 ∈ ℝ+)
9 eluzelz 9284 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℤ)
109adantl 273 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℤ)
118, 10rpexpcld 10388 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (𝐴𝑘) ∈ ℝ+)
127faccld 10422 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (!‘𝑘) ∈ ℕ)
1312nnrpd 9428 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (!‘𝑘) ∈ ℝ+)
1411, 13rpdivcld 9447 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+)
15 oveq2 5748 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
16 fveq2 5387 . . . . . . . . 9 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
1715, 16oveq12d 5758 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐴𝑛) / (!‘𝑛)) = ((𝐴𝑘) / (!‘𝑘)))
18 eqid 2115 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1917, 18fvmptg 5463 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
207, 14, 19syl2anc 406 . . . . . 6 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2120, 14eqeltrd 2192 . . . . 5 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℝ+)
22 rpaddcl 9413 . . . . . 6 ((𝑘 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑘 + 𝑦) ∈ ℝ+)
2322adantl 273 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (𝑘 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑘 + 𝑦) ∈ ℝ+)
244, 21, 23seq3p1 10175 . . . 4 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(1 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1))))
25 df-2 8736 . . . . 5 2 = (1 + 1)
2625fveq2i 5390 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(1 + 1))
2725fveq2i 5390 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1))
2827oveq2i 5751 . . . 4 ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1)))
2924, 26, 283eqtr4g 2173 . . 3 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)))
30 0nn0 8943 . . . . . . . . 9 0 ∈ ℕ0
3130, 2eleqtri 2190 . . . . . . . 8 0 ∈ (ℤ‘0)
3231a1i 9 . . . . . . 7 (𝐴 ∈ ℝ+ → 0 ∈ (ℤ‘0))
3332, 21, 23seq3p1 10175 . . . . . 6 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))))
34 1e0p1 9174 . . . . . . 7 1 = (0 + 1)
3534fveq2i 5390 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1))
3634fveq2i 5390 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))
3736oveq2i 5751 . . . . . 6 ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1)))
3833, 35, 373eqtr4g 2173 . . . . 5 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)))
39 0zd 9017 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 ∈ ℤ)
4039, 21, 23seq3-1 10173 . . . . . . 7 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0))
41 rpcn 9398 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4218eftvalcn 11262 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
4330, 42mpan2 419 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
4441, 43syl 14 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
45 eft0val 11298 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
4641, 45syl 14 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝐴↑0) / (!‘0)) = 1)
4744, 46eqtrd 2148 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
4840, 47eqtrd 2148 . . . . . 6 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
4918eftvalcn 11262 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
501, 49mpan2 419 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
51 fac1 10415 . . . . . . . . . 10 (!‘1) = 1
5251oveq2i 5751 . . . . . . . . 9 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
53 exp1 10239 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
5453oveq1d 5755 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
55 div1 8423 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
5654, 55eqtrd 2148 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
5752, 56syl5eq 2160 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
5850, 57eqtrd 2148 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
5941, 58syl 14 . . . . . 6 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
6048, 59oveq12d 5758 . . . . 5 (𝐴 ∈ ℝ+ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)) = (1 + 𝐴))
6138, 60eqtrd 2148 . . . 4 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
62 2nn0 8945 . . . . . . 7 2 ∈ ℕ0
6318eftvalcn 11262 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
6462, 63mpan2 419 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
65 fac2 10417 . . . . . . 7 (!‘2) = 2
6665oveq2i 5751 . . . . . 6 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
6764, 66syl6eq 2164 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
6841, 67syl 14 . . . 4 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
6961, 68oveq12d 5758 . . 3 (𝐴 ∈ ℝ+ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
7029, 69eqtrd 2148 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
71 id 19 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
7262a1i 9 . . 3 (𝐴 ∈ ℝ+ → 2 ∈ ℕ0)
7318, 71, 72effsumlt 11297 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴))
7470, 73eqbrtrrd 3920 1 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463   class class class wbr 3897  cmpt 3957  cfv 5091  (class class class)co 5740  cc 7582  0cc0 7584  1c1 7585   + caddc 7587   < clt 7764   / cdiv 8392  2c2 8728  0cn0 8928  cz 9005  cuz 9275  +crp 9390  seqcseq 10158  cexp 10232  !cfa 10411  expce 11247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-frec 6254  df-1o 6279  df-oadd 6283  df-er 6395  df-en 6601  df-dom 6602  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-ico 9617  df-fz 9731  df-fzo 9860  df-seqfrec 10159  df-exp 10233  df-fac 10412  df-ihash 10462  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-clim 10988  df-sumdc 11063  df-ef 11253
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator