Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p2 GIF version

Theorem efgt1p2 11461
 Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))

Proof of Theorem efgt1p2
Dummy variables 𝑘 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 9040 . . . . . . 7 1 ∈ ℕ0
2 nn0uz 9407 . . . . . . 7 0 = (ℤ‘0)
31, 2eleqtri 2215 . . . . . 6 1 ∈ (ℤ‘0)
43a1i 9 . . . . 5 (𝐴 ∈ ℝ+ → 1 ∈ (ℤ‘0))
5 elnn0uz 9410 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
65biimpri 132 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
76adantl 275 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
8 simpl 108 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝐴 ∈ ℝ+)
9 eluzelz 9382 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℤ)
109adantl 275 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℤ)
118, 10rpexpcld 10502 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (𝐴𝑘) ∈ ℝ+)
127faccld 10537 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (!‘𝑘) ∈ ℕ)
1312nnrpd 9534 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (!‘𝑘) ∈ ℝ+)
1411, 13rpdivcld 9554 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+)
15 oveq2 5792 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
16 fveq2 5431 . . . . . . . . 9 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
1715, 16oveq12d 5802 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐴𝑛) / (!‘𝑛)) = ((𝐴𝑘) / (!‘𝑘)))
18 eqid 2140 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1917, 18fvmptg 5507 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
207, 14, 19syl2anc 409 . . . . . 6 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2120, 14eqeltrd 2217 . . . . 5 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℝ+)
22 rpaddcl 9517 . . . . . 6 ((𝑘 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑘 + 𝑦) ∈ ℝ+)
2322adantl 275 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (𝑘 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑘 + 𝑦) ∈ ℝ+)
244, 21, 23seq3p1 10289 . . . 4 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(1 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1))))
25 df-2 8826 . . . . 5 2 = (1 + 1)
2625fveq2i 5434 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(1 + 1))
2725fveq2i 5434 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1))
2827oveq2i 5795 . . . 4 ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1)))
2924, 26, 283eqtr4g 2198 . . 3 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)))
30 0nn0 9039 . . . . . . . . 9 0 ∈ ℕ0
3130, 2eleqtri 2215 . . . . . . . 8 0 ∈ (ℤ‘0)
3231a1i 9 . . . . . . 7 (𝐴 ∈ ℝ+ → 0 ∈ (ℤ‘0))
3332, 21, 23seq3p1 10289 . . . . . 6 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))))
34 1e0p1 9270 . . . . . . 7 1 = (0 + 1)
3534fveq2i 5434 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1))
3634fveq2i 5434 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))
3736oveq2i 5795 . . . . . 6 ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1)))
3833, 35, 373eqtr4g 2198 . . . . 5 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)))
39 0zd 9113 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 ∈ ℤ)
4039, 21, 23seq3-1 10287 . . . . . . 7 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0))
41 rpcn 9502 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4218eftvalcn 11423 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
4330, 42mpan2 422 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
4441, 43syl 14 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
45 eft0val 11459 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
4641, 45syl 14 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝐴↑0) / (!‘0)) = 1)
4744, 46eqtrd 2173 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
4840, 47eqtrd 2173 . . . . . 6 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
4918eftvalcn 11423 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
501, 49mpan2 422 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
51 fac1 10530 . . . . . . . . . 10 (!‘1) = 1
5251oveq2i 5795 . . . . . . . . 9 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
53 exp1 10353 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
5453oveq1d 5799 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
55 div1 8510 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
5654, 55eqtrd 2173 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
5752, 56syl5eq 2185 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
5850, 57eqtrd 2173 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
5941, 58syl 14 . . . . . 6 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
6048, 59oveq12d 5802 . . . . 5 (𝐴 ∈ ℝ+ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)) = (1 + 𝐴))
6138, 60eqtrd 2173 . . . 4 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
62 2nn0 9041 . . . . . . 7 2 ∈ ℕ0
6318eftvalcn 11423 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
6462, 63mpan2 422 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
65 fac2 10532 . . . . . . 7 (!‘2) = 2
6665oveq2i 5795 . . . . . 6 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
6764, 66eqtrdi 2189 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
6841, 67syl 14 . . . 4 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
6961, 68oveq12d 5802 . . 3 (𝐴 ∈ ℝ+ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
7029, 69eqtrd 2173 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
71 id 19 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
7262a1i 9 . . 3 (𝐴 ∈ ℝ+ → 2 ∈ ℕ0)
7318, 71, 72effsumlt 11458 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴))
7470, 73eqbrtrrd 3961 1 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 1481   class class class wbr 3938   ↦ cmpt 3998  ‘cfv 5133  (class class class)co 5784  ℂcc 7665  0cc0 7667  1c1 7668   + caddc 7670   < clt 7847   / cdiv 8479  2c2 8818  ℕ0cn0 9024  ℤcz 9101  ℤ≥cuz 9373  ℝ+crp 9493  seqcseq 10272  ↑cexp 10346  !cfa 10526  expce 11408 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7758  ax-resscn 7759  ax-1cn 7760  ax-1re 7761  ax-icn 7762  ax-addcl 7763  ax-addrcl 7764  ax-mulcl 7765  ax-mulrcl 7766  ax-addcom 7767  ax-mulcom 7768  ax-addass 7769  ax-mulass 7770  ax-distr 7771  ax-i2m1 7772  ax-0lt1 7773  ax-1rid 7774  ax-0id 7775  ax-rnegex 7776  ax-precex 7777  ax-cnre 7778  ax-pre-ltirr 7779  ax-pre-ltwlin 7780  ax-pre-lttrn 7781  ax-pre-apti 7782  ax-pre-ltadd 7783  ax-pre-mulgt0 7784  ax-pre-mulext 7785  ax-arch 7786  ax-caucvg 7787 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4555  df-rel 4556  df-cnv 4557  df-co 4558  df-dm 4559  df-rn 4560  df-res 4561  df-ima 4562  df-iota 5098  df-fun 5135  df-fn 5136  df-f 5137  df-f1 5138  df-fo 5139  df-f1o 5140  df-fv 5141  df-isom 5142  df-riota 5740  df-ov 5787  df-oprab 5788  df-mpo 5789  df-1st 6048  df-2nd 6049  df-recs 6212  df-irdg 6277  df-frec 6298  df-1o 6323  df-oadd 6327  df-er 6439  df-en 6645  df-dom 6646  df-fin 6647  df-pnf 7849  df-mnf 7850  df-xr 7851  df-ltxr 7852  df-le 7853  df-sub 7982  df-neg 7983  df-reap 8384  df-ap 8391  df-div 8480  df-inn 8768  df-2 8826  df-3 8827  df-4 8828  df-n0 9025  df-z 9102  df-uz 9374  df-q 9462  df-rp 9494  df-ico 9730  df-fz 9845  df-fzo 9974  df-seqfrec 10273  df-exp 10347  df-fac 10527  df-ihash 10577  df-cj 10669  df-re 10670  df-im 10671  df-rsqrt 10825  df-abs 10826  df-clim 11103  df-sumdc 11178  df-ef 11414 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator