ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efgt1p2 GIF version

Theorem efgt1p2 11860
Description: The exponential of a positive real number is greater than the sum of the first three terms of the series expansion. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
efgt1p2 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))

Proof of Theorem efgt1p2
Dummy variables 𝑘 𝑛 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn0 9265 . . . . . . 7 1 ∈ ℕ0
2 nn0uz 9636 . . . . . . 7 0 = (ℤ‘0)
31, 2eleqtri 2271 . . . . . 6 1 ∈ (ℤ‘0)
43a1i 9 . . . . 5 (𝐴 ∈ ℝ+ → 1 ∈ (ℤ‘0))
5 elnn0uz 9639 . . . . . . . . 9 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
65biimpri 133 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
76adantl 277 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
8 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝐴 ∈ ℝ+)
9 eluzelz 9610 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℤ)
109adantl 277 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℤ)
118, 10rpexpcld 10789 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (𝐴𝑘) ∈ ℝ+)
127faccld 10828 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (!‘𝑘) ∈ ℕ)
1312nnrpd 9769 . . . . . . . 8 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → (!‘𝑘) ∈ ℝ+)
1411, 13rpdivcld 9789 . . . . . . 7 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+)
15 oveq2 5930 . . . . . . . . 9 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
16 fveq2 5558 . . . . . . . . 9 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
1715, 16oveq12d 5940 . . . . . . . 8 (𝑛 = 𝑘 → ((𝐴𝑛) / (!‘𝑛)) = ((𝐴𝑘) / (!‘𝑘)))
18 eqid 2196 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1917, 18fvmptg 5637 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴𝑘) / (!‘𝑘)) ∈ ℝ+) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
207, 14, 19syl2anc 411 . . . . . 6 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) = ((𝐴𝑘) / (!‘𝑘)))
2120, 14eqeltrd 2273 . . . . 5 ((𝐴 ∈ ℝ+𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘𝑘) ∈ ℝ+)
22 rpaddcl 9752 . . . . . 6 ((𝑘 ∈ ℝ+𝑦 ∈ ℝ+) → (𝑘 + 𝑦) ∈ ℝ+)
2322adantl 277 . . . . 5 ((𝐴 ∈ ℝ+ ∧ (𝑘 ∈ ℝ+𝑦 ∈ ℝ+)) → (𝑘 + 𝑦) ∈ ℝ+)
244, 21, 23seq3p1 10557 . . . 4 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(1 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1))))
25 df-2 9049 . . . . 5 2 = (1 + 1)
2625fveq2i 5561 . . . 4 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(1 + 1))
2725fveq2i 5561 . . . . 5 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1))
2827oveq2i 5933 . . . 4 ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(1 + 1)))
2924, 26, 283eqtr4g 2254 . . 3 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)))
30 0nn0 9264 . . . . . . . . 9 0 ∈ ℕ0
3130, 2eleqtri 2271 . . . . . . . 8 0 ∈ (ℤ‘0)
3231a1i 9 . . . . . . 7 (𝐴 ∈ ℝ+ → 0 ∈ (ℤ‘0))
3332, 21, 23seq3p1 10557 . . . . . 6 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))))
34 1e0p1 9498 . . . . . . 7 1 = (0 + 1)
3534fveq2i 5561 . . . . . 6 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘(0 + 1))
3634fveq2i 5561 . . . . . . 7 ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1))
3736oveq2i 5933 . . . . . 6 ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘(0 + 1)))
3833, 35, 373eqtr4g 2254 . . . . 5 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)))
39 0zd 9338 . . . . . . . 8 (𝐴 ∈ ℝ+ → 0 ∈ ℤ)
4039, 21, 23seq3-1 10554 . . . . . . 7 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0))
41 rpcn 9737 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
4218eftvalcn 11822 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
4330, 42mpan2 425 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
4441, 43syl 14 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = ((𝐴↑0) / (!‘0)))
45 eft0val 11858 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) = 1)
4641, 45syl 14 . . . . . . . 8 (𝐴 ∈ ℝ+ → ((𝐴↑0) / (!‘0)) = 1)
4744, 46eqtrd 2229 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘0) = 1)
4840, 47eqtrd 2229 . . . . . 6 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) = 1)
4918eftvalcn 11822 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 1 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
501, 49mpan2 425 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = ((𝐴↑1) / (!‘1)))
51 fac1 10821 . . . . . . . . . 10 (!‘1) = 1
5251oveq2i 5933 . . . . . . . . 9 ((𝐴↑1) / (!‘1)) = ((𝐴↑1) / 1)
53 exp1 10637 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (𝐴↑1) = 𝐴)
5453oveq1d 5937 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = (𝐴 / 1))
55 div1 8730 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴)
5654, 55eqtrd 2229 . . . . . . . . 9 (𝐴 ∈ ℂ → ((𝐴↑1) / 1) = 𝐴)
5752, 56eqtrid 2241 . . . . . . . 8 (𝐴 ∈ ℂ → ((𝐴↑1) / (!‘1)) = 𝐴)
5850, 57eqtrd 2229 . . . . . . 7 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
5941, 58syl 14 . . . . . 6 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1) = 𝐴)
6048, 59oveq12d 5940 . . . . 5 (𝐴 ∈ ℝ+ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘0) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘1)) = (1 + 𝐴))
6138, 60eqtrd 2229 . . . 4 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) = (1 + 𝐴))
62 2nn0 9266 . . . . . . 7 2 ∈ ℕ0
6318eftvalcn 11822 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
6462, 63mpan2 425 . . . . . 6 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / (!‘2)))
65 fac2 10823 . . . . . . 7 (!‘2) = 2
6665oveq2i 5933 . . . . . 6 ((𝐴↑2) / (!‘2)) = ((𝐴↑2) / 2)
6764, 66eqtrdi 2245 . . . . 5 (𝐴 ∈ ℂ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
6841, 67syl 14 . . . 4 (𝐴 ∈ ℝ+ → ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2) = ((𝐴↑2) / 2))
6961, 68oveq12d 5940 . . 3 (𝐴 ∈ ℝ+ → ((seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘1) + ((𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))‘2)) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
7029, 69eqtrd 2229 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) = ((1 + 𝐴) + ((𝐴↑2) / 2)))
71 id 19 . . 3 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
7262a1i 9 . . 3 (𝐴 ∈ ℝ+ → 2 ∈ ℕ0)
7318, 71, 72effsumlt 11857 . 2 (𝐴 ∈ ℝ+ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛))))‘2) < (exp‘𝐴))
7470, 73eqbrtrrd 4057 1 (𝐴 ∈ ℝ+ → ((1 + 𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4033  cmpt 4094  cfv 5258  (class class class)co 5922  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   < clt 8061   / cdiv 8699  2c2 9041  0cn0 9249  cz 9326  cuz 9601  +crp 9728  seqcseq 10539  cexp 10630  !cfa 10817  expce 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator