![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prid2 | GIF version |
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | prid1 3700 | . 2 ⊢ 𝐵 ∈ {𝐵, 𝐴} |
3 | prcom 3670 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
4 | 2, 3 | eleqtri 2252 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2148 Vcvv 2739 {cpr 3595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-sn 3600 df-pr 3601 |
This theorem is referenced by: prel12 3773 opi2 4235 opeluu 4452 ontr2exmid 4526 onsucelsucexmid 4531 regexmidlemm 4533 ordtri2or2exmid 4572 ontri2orexmidim 4573 dmrnssfld 4892 funopg 5252 acexmidlema 5869 acexmidlemcase 5873 acexmidlem2 5875 1lt2o 6446 2dom 6808 unfiexmid 6920 djuss 7072 exmidonfinlem 7195 exmidfodomrlemr 7204 exmidfodomrlemrALT 7205 exmidaclem 7210 cnelprrecn 7950 mnfxr 8017 sup3exmid 8917 m1expcl2 10545 fnpr2ob 12766 lgsdir2lem3 14592 bdop 14788 2o01f 14908 iswomni0 14961 |
Copyright terms: Public domain | W3C validator |