| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid2 | GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | prid1 3772 | . 2 ⊢ 𝐵 ∈ {𝐵, 𝐴} |
| 3 | prcom 3742 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 4 | 2, 3 | eleqtri 2304 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 {cpr 3667 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 |
| This theorem is referenced by: prel12 3848 opi2 4318 opeluu 4540 ontr2exmid 4616 onsucelsucexmid 4621 regexmidlemm 4623 ordtri2or2exmid 4662 ontri2orexmidim 4663 dmrnssfld 4986 funopg 5351 acexmidlema 5991 acexmidlemcase 5995 acexmidlem2 5997 1lt2o 6586 2dom 6956 en2m 6972 unfiexmid 7076 djuss 7233 pr2cv1 7364 exmidonfinlem 7367 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 exmidaclem 7386 cnelprrecn 8131 mnfxr 8199 sup3exmid 9100 m1expcl2 10778 fun2dmnop0 11064 fnpr2ob 13368 lgsdir2lem3 15703 upgrex 15897 bdop 16196 2o01f 16317 iswomni0 16378 |
| Copyright terms: Public domain | W3C validator |