![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prid2 | GIF version |
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
prid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | prid1 3720 | . 2 ⊢ 𝐵 ∈ {𝐵, 𝐴} |
3 | prcom 3690 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
4 | 2, 3 | eleqtri 2264 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2160 Vcvv 2756 {cpr 3615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-v 2758 df-un 3153 df-sn 3620 df-pr 3621 |
This theorem is referenced by: prel12 3793 opi2 4258 opeluu 4475 ontr2exmid 4549 onsucelsucexmid 4554 regexmidlemm 4556 ordtri2or2exmid 4595 ontri2orexmidim 4596 dmrnssfld 4915 funopg 5276 acexmidlema 5897 acexmidlemcase 5901 acexmidlem2 5903 1lt2o 6482 2dom 6846 unfiexmid 6961 djuss 7115 exmidonfinlem 7239 exmidfodomrlemr 7248 exmidfodomrlemrALT 7249 exmidaclem 7254 cnelprrecn 7994 mnfxr 8062 sup3exmid 8962 m1expcl2 10606 fnpr2ob 12897 lgsdir2lem3 15074 bdop 15291 2o01f 15411 iswomni0 15465 |
Copyright terms: Public domain | W3C validator |