| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid2 | GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | prid1 3739 | . 2 ⊢ 𝐵 ∈ {𝐵, 𝐴} |
| 3 | prcom 3709 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 4 | 2, 3 | eleqtri 2280 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2176 Vcvv 2772 {cpr 3634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 |
| This theorem is referenced by: prel12 3812 opi2 4277 opeluu 4497 ontr2exmid 4573 onsucelsucexmid 4578 regexmidlemm 4580 ordtri2or2exmid 4619 ontri2orexmidim 4620 dmrnssfld 4941 funopg 5305 acexmidlema 5935 acexmidlemcase 5939 acexmidlem2 5941 1lt2o 6528 2dom 6897 unfiexmid 7015 djuss 7172 exmidonfinlem 7301 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 exmidaclem 7320 cnelprrecn 8061 mnfxr 8129 sup3exmid 9030 m1expcl2 10706 fun2dmnop0 10992 fnpr2ob 13172 lgsdir2lem3 15507 bdop 15811 2o01f 15931 iswomni0 15990 |
| Copyright terms: Public domain | W3C validator |