| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid2 | GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | prid1 3728 | . 2 ⊢ 𝐵 ∈ {𝐵, 𝐴} |
| 3 | prcom 3698 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 4 | 2, 3 | eleqtri 2271 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: prel12 3801 opi2 4266 opeluu 4485 ontr2exmid 4561 onsucelsucexmid 4566 regexmidlemm 4568 ordtri2or2exmid 4607 ontri2orexmidim 4608 dmrnssfld 4929 funopg 5292 acexmidlema 5913 acexmidlemcase 5917 acexmidlem2 5919 1lt2o 6500 2dom 6864 unfiexmid 6979 djuss 7136 exmidonfinlem 7260 exmidfodomrlemr 7269 exmidfodomrlemrALT 7270 exmidaclem 7275 cnelprrecn 8015 mnfxr 8083 sup3exmid 8984 m1expcl2 10653 fnpr2ob 12983 lgsdir2lem3 15271 bdop 15521 2o01f 15641 iswomni0 15695 |
| Copyright terms: Public domain | W3C validator |