| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prid2 | GIF version | ||
| Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| prid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| prid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | prid1 3729 | . 2 ⊢ 𝐵 ∈ {𝐵, 𝐴} |
| 3 | prcom 3699 | . 2 ⊢ {𝐵, 𝐴} = {𝐴, 𝐵} | |
| 4 | 2, 3 | eleqtri 2271 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵} |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 Vcvv 2763 {cpr 3624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 |
| This theorem is referenced by: prel12 3802 opi2 4267 opeluu 4486 ontr2exmid 4562 onsucelsucexmid 4567 regexmidlemm 4569 ordtri2or2exmid 4608 ontri2orexmidim 4609 dmrnssfld 4930 funopg 5293 acexmidlema 5916 acexmidlemcase 5920 acexmidlem2 5922 1lt2o 6509 2dom 6873 unfiexmid 6988 djuss 7145 exmidonfinlem 7272 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 exmidaclem 7291 cnelprrecn 8032 mnfxr 8100 sup3exmid 9001 m1expcl2 10670 fnpr2ob 13042 lgsdir2lem3 15355 bdop 15605 2o01f 15725 iswomni0 15782 |
| Copyright terms: Public domain | W3C validator |