ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz01or GIF version

Theorem fz01or 10203
Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.)
Assertion
Ref Expression
fz01or (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1))

Proof of Theorem fz01or
StepHypRef Expression
1 1eluzge0 9665 . . . . . 6 1 ∈ (ℤ‘0)
2 eluzfz1 10123 . . . . . 6 (1 ∈ (ℤ‘0) → 0 ∈ (0...1))
31, 2ax-mp 5 . . . . 5 0 ∈ (0...1)
4 fzsplit 10143 . . . . 5 (0 ∈ (0...1) → (0...1) = ((0...0) ∪ ((0 + 1)...1)))
53, 4ax-mp 5 . . . 4 (0...1) = ((0...0) ∪ ((0 + 1)...1))
65eleq2i 2263 . . 3 (𝐴 ∈ (0...1) ↔ 𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)))
7 elun 3305 . . 3 (𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)))
86, 7bitri 184 . 2 (𝐴 ∈ (0...1) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)))
9 elfz1eq 10127 . . . 4 (𝐴 ∈ (0...0) → 𝐴 = 0)
10 0nn0 9281 . . . . . . 7 0 ∈ ℕ0
11 nn0uz 9653 . . . . . . 7 0 = (ℤ‘0)
1210, 11eleqtri 2271 . . . . . 6 0 ∈ (ℤ‘0)
13 eluzfz1 10123 . . . . . 6 (0 ∈ (ℤ‘0) → 0 ∈ (0...0))
1412, 13ax-mp 5 . . . . 5 0 ∈ (0...0)
15 eleq1 2259 . . . . 5 (𝐴 = 0 → (𝐴 ∈ (0...0) ↔ 0 ∈ (0...0)))
1614, 15mpbiri 168 . . . 4 (𝐴 = 0 → 𝐴 ∈ (0...0))
179, 16impbii 126 . . 3 (𝐴 ∈ (0...0) ↔ 𝐴 = 0)
18 0p1e1 9121 . . . . . 6 (0 + 1) = 1
1918oveq1i 5935 . . . . 5 ((0 + 1)...1) = (1...1)
2019eleq2i 2263 . . . 4 (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 ∈ (1...1))
21 elfz1eq 10127 . . . . 5 (𝐴 ∈ (1...1) → 𝐴 = 1)
22 1nn 9018 . . . . . . . 8 1 ∈ ℕ
23 nnuz 9654 . . . . . . . 8 ℕ = (ℤ‘1)
2422, 23eleqtri 2271 . . . . . . 7 1 ∈ (ℤ‘1)
25 eluzfz1 10123 . . . . . . 7 (1 ∈ (ℤ‘1) → 1 ∈ (1...1))
2624, 25ax-mp 5 . . . . . 6 1 ∈ (1...1)
27 eleq1 2259 . . . . . 6 (𝐴 = 1 → (𝐴 ∈ (1...1) ↔ 1 ∈ (1...1)))
2826, 27mpbiri 168 . . . . 5 (𝐴 = 1 → 𝐴 ∈ (1...1))
2921, 28impbii 126 . . . 4 (𝐴 ∈ (1...1) ↔ 𝐴 = 1)
3020, 29bitri 184 . . 3 (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 = 1)
3117, 30orbi12i 765 . 2 ((𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)) ↔ (𝐴 = 0 ∨ 𝐴 = 1))
328, 31bitri 184 1 (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709   = wceq 1364  wcel 2167  cun 3155  cfv 5259  (class class class)co 5925  0cc0 7896  1c1 7897   + caddc 7899  cn 9007  0cn0 9266  cuz 9618  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  hashfiv01gt1  10891  mod2eq1n2dvds  12061
  Copyright terms: Public domain W3C validator