Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fz01or | GIF version |
Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.) |
Ref | Expression |
---|---|
fz01or | ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1eluzge0 9533 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
2 | eluzfz1 9987 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → 0 ∈ (0...1)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...1) |
4 | fzsplit 10007 | . . . . 5 ⊢ (0 ∈ (0...1) → (0...1) = ((0...0) ∪ ((0 + 1)...1))) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (0...1) = ((0...0) ∪ ((0 + 1)...1)) |
6 | 5 | eleq2i 2237 | . . 3 ⊢ (𝐴 ∈ (0...1) ↔ 𝐴 ∈ ((0...0) ∪ ((0 + 1)...1))) |
7 | elun 3268 | . . 3 ⊢ (𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) | |
8 | 6, 7 | bitri 183 | . 2 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) |
9 | elfz1eq 9991 | . . . 4 ⊢ (𝐴 ∈ (0...0) → 𝐴 = 0) | |
10 | 0nn0 9150 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
11 | nn0uz 9521 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
12 | 10, 11 | eleqtri 2245 | . . . . . 6 ⊢ 0 ∈ (ℤ≥‘0) |
13 | eluzfz1 9987 | . . . . . 6 ⊢ (0 ∈ (ℤ≥‘0) → 0 ∈ (0...0)) | |
14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...0) |
15 | eleq1 2233 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ (0...0) ↔ 0 ∈ (0...0))) | |
16 | 14, 15 | mpbiri 167 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 ∈ (0...0)) |
17 | 9, 16 | impbii 125 | . . 3 ⊢ (𝐴 ∈ (0...0) ↔ 𝐴 = 0) |
18 | 0p1e1 8992 | . . . . . 6 ⊢ (0 + 1) = 1 | |
19 | 18 | oveq1i 5863 | . . . . 5 ⊢ ((0 + 1)...1) = (1...1) |
20 | 19 | eleq2i 2237 | . . . 4 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 ∈ (1...1)) |
21 | elfz1eq 9991 | . . . . 5 ⊢ (𝐴 ∈ (1...1) → 𝐴 = 1) | |
22 | 1nn 8889 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
23 | nnuz 9522 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
24 | 22, 23 | eleqtri 2245 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘1) |
25 | eluzfz1 9987 | . . . . . . 7 ⊢ (1 ∈ (ℤ≥‘1) → 1 ∈ (1...1)) | |
26 | 24, 25 | ax-mp 5 | . . . . . 6 ⊢ 1 ∈ (1...1) |
27 | eleq1 2233 | . . . . . 6 ⊢ (𝐴 = 1 → (𝐴 ∈ (1...1) ↔ 1 ∈ (1...1))) | |
28 | 26, 27 | mpbiri 167 | . . . . 5 ⊢ (𝐴 = 1 → 𝐴 ∈ (1...1)) |
29 | 21, 28 | impbii 125 | . . . 4 ⊢ (𝐴 ∈ (1...1) ↔ 𝐴 = 1) |
30 | 20, 29 | bitri 183 | . . 3 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 = 1) |
31 | 17, 30 | orbi12i 759 | . 2 ⊢ ((𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
32 | 8, 31 | bitri 183 | 1 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 ‘cfv 5198 (class class class)co 5853 0cc0 7774 1c1 7775 + caddc 7777 ℕcn 8878 ℕ0cn0 9135 ℤ≥cuz 9487 ...cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: hashfiv01gt1 10716 mod2eq1n2dvds 11838 |
Copyright terms: Public domain | W3C validator |