![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fz01or | GIF version |
Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.) |
Ref | Expression |
---|---|
fz01or | ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1eluzge0 9642 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
2 | eluzfz1 10100 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → 0 ∈ (0...1)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...1) |
4 | fzsplit 10120 | . . . . 5 ⊢ (0 ∈ (0...1) → (0...1) = ((0...0) ∪ ((0 + 1)...1))) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (0...1) = ((0...0) ∪ ((0 + 1)...1)) |
6 | 5 | eleq2i 2260 | . . 3 ⊢ (𝐴 ∈ (0...1) ↔ 𝐴 ∈ ((0...0) ∪ ((0 + 1)...1))) |
7 | elun 3301 | . . 3 ⊢ (𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) | |
8 | 6, 7 | bitri 184 | . 2 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) |
9 | elfz1eq 10104 | . . . 4 ⊢ (𝐴 ∈ (0...0) → 𝐴 = 0) | |
10 | 0nn0 9258 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
11 | nn0uz 9630 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
12 | 10, 11 | eleqtri 2268 | . . . . . 6 ⊢ 0 ∈ (ℤ≥‘0) |
13 | eluzfz1 10100 | . . . . . 6 ⊢ (0 ∈ (ℤ≥‘0) → 0 ∈ (0...0)) | |
14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...0) |
15 | eleq1 2256 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ (0...0) ↔ 0 ∈ (0...0))) | |
16 | 14, 15 | mpbiri 168 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 ∈ (0...0)) |
17 | 9, 16 | impbii 126 | . . 3 ⊢ (𝐴 ∈ (0...0) ↔ 𝐴 = 0) |
18 | 0p1e1 9098 | . . . . . 6 ⊢ (0 + 1) = 1 | |
19 | 18 | oveq1i 5929 | . . . . 5 ⊢ ((0 + 1)...1) = (1...1) |
20 | 19 | eleq2i 2260 | . . . 4 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 ∈ (1...1)) |
21 | elfz1eq 10104 | . . . . 5 ⊢ (𝐴 ∈ (1...1) → 𝐴 = 1) | |
22 | 1nn 8995 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
23 | nnuz 9631 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
24 | 22, 23 | eleqtri 2268 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘1) |
25 | eluzfz1 10100 | . . . . . . 7 ⊢ (1 ∈ (ℤ≥‘1) → 1 ∈ (1...1)) | |
26 | 24, 25 | ax-mp 5 | . . . . . 6 ⊢ 1 ∈ (1...1) |
27 | eleq1 2256 | . . . . . 6 ⊢ (𝐴 = 1 → (𝐴 ∈ (1...1) ↔ 1 ∈ (1...1))) | |
28 | 26, 27 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = 1 → 𝐴 ∈ (1...1)) |
29 | 21, 28 | impbii 126 | . . . 4 ⊢ (𝐴 ∈ (1...1) ↔ 𝐴 = 1) |
30 | 20, 29 | bitri 184 | . . 3 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 = 1) |
31 | 17, 30 | orbi12i 765 | . 2 ⊢ ((𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
32 | 8, 31 | bitri 184 | 1 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ∪ cun 3152 ‘cfv 5255 (class class class)co 5919 0cc0 7874 1c1 7875 + caddc 7877 ℕcn 8984 ℕ0cn0 9243 ℤ≥cuz 9595 ...cfz 10077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 |
This theorem is referenced by: hashfiv01gt1 10856 mod2eq1n2dvds 12023 |
Copyright terms: Public domain | W3C validator |