| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fz01or | GIF version | ||
| Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.) |
| Ref | Expression |
|---|---|
| fz01or | ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1eluzge0 9694 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
| 2 | eluzfz1 10152 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → 0 ∈ (0...1)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...1) |
| 4 | fzsplit 10172 | . . . . 5 ⊢ (0 ∈ (0...1) → (0...1) = ((0...0) ∪ ((0 + 1)...1))) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (0...1) = ((0...0) ∪ ((0 + 1)...1)) |
| 6 | 5 | eleq2i 2271 | . . 3 ⊢ (𝐴 ∈ (0...1) ↔ 𝐴 ∈ ((0...0) ∪ ((0 + 1)...1))) |
| 7 | elun 3313 | . . 3 ⊢ (𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) | |
| 8 | 6, 7 | bitri 184 | . 2 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) |
| 9 | elfz1eq 10156 | . . . 4 ⊢ (𝐴 ∈ (0...0) → 𝐴 = 0) | |
| 10 | 0nn0 9309 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 11 | nn0uz 9682 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 12 | 10, 11 | eleqtri 2279 | . . . . . 6 ⊢ 0 ∈ (ℤ≥‘0) |
| 13 | eluzfz1 10152 | . . . . . 6 ⊢ (0 ∈ (ℤ≥‘0) → 0 ∈ (0...0)) | |
| 14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...0) |
| 15 | eleq1 2267 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ (0...0) ↔ 0 ∈ (0...0))) | |
| 16 | 14, 15 | mpbiri 168 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 ∈ (0...0)) |
| 17 | 9, 16 | impbii 126 | . . 3 ⊢ (𝐴 ∈ (0...0) ↔ 𝐴 = 0) |
| 18 | 0p1e1 9149 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 19 | 18 | oveq1i 5953 | . . . . 5 ⊢ ((0 + 1)...1) = (1...1) |
| 20 | 19 | eleq2i 2271 | . . . 4 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 ∈ (1...1)) |
| 21 | elfz1eq 10156 | . . . . 5 ⊢ (𝐴 ∈ (1...1) → 𝐴 = 1) | |
| 22 | 1nn 9046 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 23 | nnuz 9683 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 24 | 22, 23 | eleqtri 2279 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘1) |
| 25 | eluzfz1 10152 | . . . . . . 7 ⊢ (1 ∈ (ℤ≥‘1) → 1 ∈ (1...1)) | |
| 26 | 24, 25 | ax-mp 5 | . . . . . 6 ⊢ 1 ∈ (1...1) |
| 27 | eleq1 2267 | . . . . . 6 ⊢ (𝐴 = 1 → (𝐴 ∈ (1...1) ↔ 1 ∈ (1...1))) | |
| 28 | 26, 27 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = 1 → 𝐴 ∈ (1...1)) |
| 29 | 21, 28 | impbii 126 | . . . 4 ⊢ (𝐴 ∈ (1...1) ↔ 𝐴 = 1) |
| 30 | 20, 29 | bitri 184 | . . 3 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 = 1) |
| 31 | 17, 30 | orbi12i 765 | . 2 ⊢ ((𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
| 32 | 8, 31 | bitri 184 | 1 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ∪ cun 3163 ‘cfv 5270 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 ℕcn 9035 ℕ0cn0 9294 ℤ≥cuz 9647 ...cfz 10129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 |
| This theorem is referenced by: hashfiv01gt1 10925 mod2eq1n2dvds 12132 |
| Copyright terms: Public domain | W3C validator |