![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fz01or | GIF version |
Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.) |
Ref | Expression |
---|---|
fz01or | ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1eluzge0 9271 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
2 | eluzfz1 9704 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → 0 ∈ (0...1)) | |
3 | 1, 2 | ax-mp 7 | . . . . 5 ⊢ 0 ∈ (0...1) |
4 | fzsplit 9724 | . . . . 5 ⊢ (0 ∈ (0...1) → (0...1) = ((0...0) ∪ ((0 + 1)...1))) | |
5 | 3, 4 | ax-mp 7 | . . . 4 ⊢ (0...1) = ((0...0) ∪ ((0 + 1)...1)) |
6 | 5 | eleq2i 2181 | . . 3 ⊢ (𝐴 ∈ (0...1) ↔ 𝐴 ∈ ((0...0) ∪ ((0 + 1)...1))) |
7 | elun 3183 | . . 3 ⊢ (𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) | |
8 | 6, 7 | bitri 183 | . 2 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) |
9 | elfz1eq 9708 | . . . 4 ⊢ (𝐴 ∈ (0...0) → 𝐴 = 0) | |
10 | 0nn0 8896 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
11 | nn0uz 9262 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
12 | 10, 11 | eleqtri 2189 | . . . . . 6 ⊢ 0 ∈ (ℤ≥‘0) |
13 | eluzfz1 9704 | . . . . . 6 ⊢ (0 ∈ (ℤ≥‘0) → 0 ∈ (0...0)) | |
14 | 12, 13 | ax-mp 7 | . . . . 5 ⊢ 0 ∈ (0...0) |
15 | eleq1 2177 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ (0...0) ↔ 0 ∈ (0...0))) | |
16 | 14, 15 | mpbiri 167 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 ∈ (0...0)) |
17 | 9, 16 | impbii 125 | . . 3 ⊢ (𝐴 ∈ (0...0) ↔ 𝐴 = 0) |
18 | 0p1e1 8744 | . . . . . 6 ⊢ (0 + 1) = 1 | |
19 | 18 | oveq1i 5738 | . . . . 5 ⊢ ((0 + 1)...1) = (1...1) |
20 | 19 | eleq2i 2181 | . . . 4 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 ∈ (1...1)) |
21 | elfz1eq 9708 | . . . . 5 ⊢ (𝐴 ∈ (1...1) → 𝐴 = 1) | |
22 | 1nn 8641 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
23 | nnuz 9263 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
24 | 22, 23 | eleqtri 2189 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘1) |
25 | eluzfz1 9704 | . . . . . . 7 ⊢ (1 ∈ (ℤ≥‘1) → 1 ∈ (1...1)) | |
26 | 24, 25 | ax-mp 7 | . . . . . 6 ⊢ 1 ∈ (1...1) |
27 | eleq1 2177 | . . . . . 6 ⊢ (𝐴 = 1 → (𝐴 ∈ (1...1) ↔ 1 ∈ (1...1))) | |
28 | 26, 27 | mpbiri 167 | . . . . 5 ⊢ (𝐴 = 1 → 𝐴 ∈ (1...1)) |
29 | 21, 28 | impbii 125 | . . . 4 ⊢ (𝐴 ∈ (1...1) ↔ 𝐴 = 1) |
30 | 20, 29 | bitri 183 | . . 3 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 = 1) |
31 | 17, 30 | orbi12i 736 | . 2 ⊢ ((𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
32 | 8, 31 | bitri 183 | 1 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 680 = wceq 1314 ∈ wcel 1463 ∪ cun 3035 ‘cfv 5081 (class class class)co 5728 0cc0 7547 1c1 7548 + caddc 7550 ℕcn 8630 ℕ0cn0 8881 ℤ≥cuz 9228 ...cfz 9683 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-addass 7647 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 |
This theorem depends on definitions: df-bi 116 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-inn 8631 df-n0 8882 df-z 8959 df-uz 9229 df-fz 9684 |
This theorem is referenced by: hashfiv01gt1 10421 mod2eq1n2dvds 11424 |
Copyright terms: Public domain | W3C validator |