| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fz01or | GIF version | ||
| Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.) |
| Ref | Expression |
|---|---|
| fz01or | ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1eluzge0 9715 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
| 2 | eluzfz1 10173 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → 0 ∈ (0...1)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...1) |
| 4 | fzsplit 10193 | . . . . 5 ⊢ (0 ∈ (0...1) → (0...1) = ((0...0) ∪ ((0 + 1)...1))) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (0...1) = ((0...0) ∪ ((0 + 1)...1)) |
| 6 | 5 | eleq2i 2273 | . . 3 ⊢ (𝐴 ∈ (0...1) ↔ 𝐴 ∈ ((0...0) ∪ ((0 + 1)...1))) |
| 7 | elun 3318 | . . 3 ⊢ (𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) | |
| 8 | 6, 7 | bitri 184 | . 2 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) |
| 9 | elfz1eq 10177 | . . . 4 ⊢ (𝐴 ∈ (0...0) → 𝐴 = 0) | |
| 10 | 0nn0 9330 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 11 | nn0uz 9703 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 12 | 10, 11 | eleqtri 2281 | . . . . . 6 ⊢ 0 ∈ (ℤ≥‘0) |
| 13 | eluzfz1 10173 | . . . . . 6 ⊢ (0 ∈ (ℤ≥‘0) → 0 ∈ (0...0)) | |
| 14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...0) |
| 15 | eleq1 2269 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ (0...0) ↔ 0 ∈ (0...0))) | |
| 16 | 14, 15 | mpbiri 168 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 ∈ (0...0)) |
| 17 | 9, 16 | impbii 126 | . . 3 ⊢ (𝐴 ∈ (0...0) ↔ 𝐴 = 0) |
| 18 | 0p1e1 9170 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 19 | 18 | oveq1i 5967 | . . . . 5 ⊢ ((0 + 1)...1) = (1...1) |
| 20 | 19 | eleq2i 2273 | . . . 4 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 ∈ (1...1)) |
| 21 | elfz1eq 10177 | . . . . 5 ⊢ (𝐴 ∈ (1...1) → 𝐴 = 1) | |
| 22 | 1nn 9067 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 23 | nnuz 9704 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 24 | 22, 23 | eleqtri 2281 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘1) |
| 25 | eluzfz1 10173 | . . . . . . 7 ⊢ (1 ∈ (ℤ≥‘1) → 1 ∈ (1...1)) | |
| 26 | 24, 25 | ax-mp 5 | . . . . . 6 ⊢ 1 ∈ (1...1) |
| 27 | eleq1 2269 | . . . . . 6 ⊢ (𝐴 = 1 → (𝐴 ∈ (1...1) ↔ 1 ∈ (1...1))) | |
| 28 | 26, 27 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = 1 → 𝐴 ∈ (1...1)) |
| 29 | 21, 28 | impbii 126 | . . . 4 ⊢ (𝐴 ∈ (1...1) ↔ 𝐴 = 1) |
| 30 | 20, 29 | bitri 184 | . . 3 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 = 1) |
| 31 | 17, 30 | orbi12i 766 | . 2 ⊢ ((𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
| 32 | 8, 31 | bitri 184 | 1 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∪ cun 3168 ‘cfv 5280 (class class class)co 5957 0cc0 7945 1c1 7946 + caddc 7948 ℕcn 9056 ℕ0cn0 9315 ℤ≥cuz 9668 ...cfz 10150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 df-fz 10151 |
| This theorem is referenced by: hashfiv01gt1 10949 mod2eq1n2dvds 12265 |
| Copyright terms: Public domain | W3C validator |