| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fz01or | GIF version | ||
| Description: An integer is in the integer range from zero to one iff it is either zero or one. (Contributed by Jim Kingdon, 11-Nov-2021.) |
| Ref | Expression |
|---|---|
| fz01or | ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1eluzge0 9765 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
| 2 | eluzfz1 10223 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → 0 ∈ (0...1)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...1) |
| 4 | fzsplit 10243 | . . . . 5 ⊢ (0 ∈ (0...1) → (0...1) = ((0...0) ∪ ((0 + 1)...1))) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (0...1) = ((0...0) ∪ ((0 + 1)...1)) |
| 6 | 5 | eleq2i 2296 | . . 3 ⊢ (𝐴 ∈ (0...1) ↔ 𝐴 ∈ ((0...0) ∪ ((0 + 1)...1))) |
| 7 | elun 3345 | . . 3 ⊢ (𝐴 ∈ ((0...0) ∪ ((0 + 1)...1)) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) | |
| 8 | 6, 7 | bitri 184 | . 2 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1))) |
| 9 | elfz1eq 10227 | . . . 4 ⊢ (𝐴 ∈ (0...0) → 𝐴 = 0) | |
| 10 | 0nn0 9380 | . . . . . . 7 ⊢ 0 ∈ ℕ0 | |
| 11 | nn0uz 9753 | . . . . . . 7 ⊢ ℕ0 = (ℤ≥‘0) | |
| 12 | 10, 11 | eleqtri 2304 | . . . . . 6 ⊢ 0 ∈ (ℤ≥‘0) |
| 13 | eluzfz1 10223 | . . . . . 6 ⊢ (0 ∈ (ℤ≥‘0) → 0 ∈ (0...0)) | |
| 14 | 12, 13 | ax-mp 5 | . . . . 5 ⊢ 0 ∈ (0...0) |
| 15 | eleq1 2292 | . . . . 5 ⊢ (𝐴 = 0 → (𝐴 ∈ (0...0) ↔ 0 ∈ (0...0))) | |
| 16 | 14, 15 | mpbiri 168 | . . . 4 ⊢ (𝐴 = 0 → 𝐴 ∈ (0...0)) |
| 17 | 9, 16 | impbii 126 | . . 3 ⊢ (𝐴 ∈ (0...0) ↔ 𝐴 = 0) |
| 18 | 0p1e1 9220 | . . . . . 6 ⊢ (0 + 1) = 1 | |
| 19 | 18 | oveq1i 6010 | . . . . 5 ⊢ ((0 + 1)...1) = (1...1) |
| 20 | 19 | eleq2i 2296 | . . . 4 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 ∈ (1...1)) |
| 21 | elfz1eq 10227 | . . . . 5 ⊢ (𝐴 ∈ (1...1) → 𝐴 = 1) | |
| 22 | 1nn 9117 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
| 23 | nnuz 9754 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
| 24 | 22, 23 | eleqtri 2304 | . . . . . . 7 ⊢ 1 ∈ (ℤ≥‘1) |
| 25 | eluzfz1 10223 | . . . . . . 7 ⊢ (1 ∈ (ℤ≥‘1) → 1 ∈ (1...1)) | |
| 26 | 24, 25 | ax-mp 5 | . . . . . 6 ⊢ 1 ∈ (1...1) |
| 27 | eleq1 2292 | . . . . . 6 ⊢ (𝐴 = 1 → (𝐴 ∈ (1...1) ↔ 1 ∈ (1...1))) | |
| 28 | 26, 27 | mpbiri 168 | . . . . 5 ⊢ (𝐴 = 1 → 𝐴 ∈ (1...1)) |
| 29 | 21, 28 | impbii 126 | . . . 4 ⊢ (𝐴 ∈ (1...1) ↔ 𝐴 = 1) |
| 30 | 20, 29 | bitri 184 | . . 3 ⊢ (𝐴 ∈ ((0 + 1)...1) ↔ 𝐴 = 1) |
| 31 | 17, 30 | orbi12i 769 | . 2 ⊢ ((𝐴 ∈ (0...0) ∨ 𝐴 ∈ ((0 + 1)...1)) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
| 32 | 8, 31 | bitri 184 | 1 ⊢ (𝐴 ∈ (0...1) ↔ (𝐴 = 0 ∨ 𝐴 = 1)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 ‘cfv 5317 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 ℕcn 9106 ℕ0cn0 9365 ℤ≥cuz 9718 ...cfz 10200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: hashfiv01gt1 10999 mod2eq1n2dvds 12385 |
| Copyright terms: Public domain | W3C validator |