ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ege2le3 GIF version

Theorem ege2le3 11817
Description: Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
erelem1.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
Assertion
Ref Expression
ege2le3 (2 ≤ e ∧ e ≤ 3)

Proof of Theorem ege2le3
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 9258 . . . . . . . . 9 0 ∈ ℕ0
2 nn0uz 9630 . . . . . . . . 9 0 = (ℤ‘0)
31, 2eleqtri 2268 . . . . . . . 8 0 ∈ (ℤ‘0)
43a1i 9 . . . . . . 7 (⊤ → 0 ∈ (ℤ‘0))
5 elnn0uz 9633 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
65biimpri 133 . . . . . . . . 9 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
7 faccl 10809 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
87nnrecred 9031 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (1 / (!‘𝑘)) ∈ ℝ)
9 fveq2 5555 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
109oveq2d 5935 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
11 erelem1.2 . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
1210, 11fvmptg 5634 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (1 / (!‘𝑘)) ∈ ℝ) → (𝐺𝑘) = (1 / (!‘𝑘)))
138, 12mpdan 421 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (1 / (!‘𝑘)))
1413, 8eqeltrd 2270 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝐺𝑘) ∈ ℝ)
156, 14syl 14 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → (𝐺𝑘) ∈ ℝ)
1615adantl 277 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ (ℤ‘0)) → (𝐺𝑘) ∈ ℝ)
17 readdcl 8000 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ)
1817adantl 277 . . . . . . 7 ((⊤ ∧ (𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑘 + 𝑦) ∈ ℝ)
194, 16, 18seq3p1 10539 . . . . . 6 (⊤ → (seq0( + , 𝐺)‘(0 + 1)) = ((seq0( + , 𝐺)‘0) + (𝐺‘(0 + 1))))
20 0zd 9332 . . . . . . . . 9 (⊤ → 0 ∈ ℤ)
2120, 16, 18seq3-1 10536 . . . . . . . 8 (⊤ → (seq0( + , 𝐺)‘0) = (𝐺‘0))
22 fveq2 5555 . . . . . . . . . . . . 13 (𝑛 = 0 → (!‘𝑛) = (!‘0))
23 fac0 10802 . . . . . . . . . . . . 13 (!‘0) = 1
2422, 23eqtrdi 2242 . . . . . . . . . . . 12 (𝑛 = 0 → (!‘𝑛) = 1)
2524oveq2d 5935 . . . . . . . . . . 11 (𝑛 = 0 → (1 / (!‘𝑛)) = (1 / 1))
26 ax-1cn 7967 . . . . . . . . . . . 12 1 ∈ ℂ
2726div1i 8761 . . . . . . . . . . 11 (1 / 1) = 1
2825, 27eqtrdi 2242 . . . . . . . . . 10 (𝑛 = 0 → (1 / (!‘𝑛)) = 1)
29 1ex 8016 . . . . . . . . . 10 1 ∈ V
3028, 11, 29fvmpt 5635 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐺‘0) = 1)
311, 30mp1i 10 . . . . . . . 8 (⊤ → (𝐺‘0) = 1)
3221, 31eqtrd 2226 . . . . . . 7 (⊤ → (seq0( + , 𝐺)‘0) = 1)
33 1e0p1 9492 . . . . . . . . 9 1 = (0 + 1)
3433fveq2i 5558 . . . . . . . 8 (𝐺‘1) = (𝐺‘(0 + 1))
35 1nn0 9259 . . . . . . . . 9 1 ∈ ℕ0
36 fveq2 5555 . . . . . . . . . . . . 13 (𝑛 = 1 → (!‘𝑛) = (!‘1))
37 fac1 10803 . . . . . . . . . . . . 13 (!‘1) = 1
3836, 37eqtrdi 2242 . . . . . . . . . . . 12 (𝑛 = 1 → (!‘𝑛) = 1)
3938oveq2d 5935 . . . . . . . . . . 11 (𝑛 = 1 → (1 / (!‘𝑛)) = (1 / 1))
4039, 27eqtrdi 2242 . . . . . . . . . 10 (𝑛 = 1 → (1 / (!‘𝑛)) = 1)
4140, 11, 29fvmpt 5635 . . . . . . . . 9 (1 ∈ ℕ0 → (𝐺‘1) = 1)
4235, 41mp1i 10 . . . . . . . 8 (⊤ → (𝐺‘1) = 1)
4334, 42eqtr3id 2240 . . . . . . 7 (⊤ → (𝐺‘(0 + 1)) = 1)
4432, 43oveq12d 5937 . . . . . 6 (⊤ → ((seq0( + , 𝐺)‘0) + (𝐺‘(0 + 1))) = (1 + 1))
4519, 44eqtrd 2226 . . . . 5 (⊤ → (seq0( + , 𝐺)‘(0 + 1)) = (1 + 1))
4633fveq2i 5558 . . . . 5 (seq0( + , 𝐺)‘1) = (seq0( + , 𝐺)‘(0 + 1))
47 df-2 9043 . . . . 5 2 = (1 + 1)
4845, 46, 473eqtr4g 2251 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) = 2)
4935a1i 9 . . . . 5 (⊤ → 1 ∈ ℕ0)
50 nn0z 9340 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
51 1exp 10642 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
5250, 51syl 14 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
5352oveq1d 5934 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
5453mpteq2ia 4116 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
5511, 54eqtr4i 2217 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
5655efcvg 11812 . . . . . . 7 (1 ∈ ℂ → seq0( + , 𝐺) ⇝ (exp‘1))
5726, 56mp1i 10 . . . . . 6 (⊤ → seq0( + , 𝐺) ⇝ (exp‘1))
58 df-e 11795 . . . . . 6 e = (exp‘1)
5957, 58breqtrrdi 4072 . . . . 5 (⊤ → seq0( + , 𝐺) ⇝ e)
6013adantl 277 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = (1 / (!‘𝑘)))
617adantl 277 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
6261nnrecred 9031 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ)
6360, 62eqeltrd 2270 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
6461nnred 8997 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
6561nngt0d 9028 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
66 1re 8020 . . . . . . . 8 1 ∈ ℝ
67 0le1 8502 . . . . . . . 8 0 ≤ 1
68 divge0 8894 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (1 / (!‘𝑘)))
6966, 67, 68mpanl12 436 . . . . . . 7 (((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘)) → 0 ≤ (1 / (!‘𝑘)))
7064, 65, 69syl2anc 411 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (1 / (!‘𝑘)))
7170, 60breqtrrd 4058 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐺𝑘))
722, 49, 59, 63, 71climserle 11491 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) ≤ e)
7348, 72eqbrtrrd 4054 . . 3 (⊤ → 2 ≤ e)
7473mptru 1373 . 2 2 ≤ e
75 nnuz 9631 . . . . . 6 ℕ = (ℤ‘1)
76 1zzd 9347 . . . . . 6 (⊤ → 1 ∈ ℤ)
771a1i 9 . . . . . . . 8 (⊤ → 0 ∈ ℕ0)
7863recnd 8050 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
792, 77, 78, 59clim2ser 11483 . . . . . . 7 (⊤ → seq(0 + 1)( + , 𝐺) ⇝ (e − (seq0( + , 𝐺)‘0)))
80 0p1e1 9098 . . . . . . . 8 (0 + 1) = 1
81 seqeq1 10524 . . . . . . . 8 ((0 + 1) = 1 → seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺))
8280, 81ax-mp 5 . . . . . . 7 seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺)
8332mptru 1373 . . . . . . . 8 (seq0( + , 𝐺)‘0) = 1
8483oveq2i 5930 . . . . . . 7 (e − (seq0( + , 𝐺)‘0)) = (e − 1)
8579, 82, 843brtr3g 4063 . . . . . 6 (⊤ → seq1( + , 𝐺) ⇝ (e − 1))
86 2cnd 9057 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
87 halfre 9198 . . . . . . . . . . . . . . 15 (1 / 2) ∈ ℝ
8887a1i 9 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / 2) ∈ ℝ)
89 id 19 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
9088, 89reexpcld 10764 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 / 2)↑𝑘) ∈ ℝ)
91 oveq2 5927 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
92 eqid 2193 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
9391, 92fvmptg 5634 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ ((1 / 2)↑𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
9490, 93mpdan 421 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
9594adantl 277 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
96 simpr 110 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
97 reexpcl 10630 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
9887, 96, 97sylancr 414 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
9998recnd 8050 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℂ)
10095, 99eqeltrd 2270 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
101 1lt2 9154 . . . . . . . . . . . . . 14 1 < 2
102 2re 9054 . . . . . . . . . . . . . . 15 2 ∈ ℝ
103 0le2 9074 . . . . . . . . . . . . . . 15 0 ≤ 2
104 absid 11218 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
105102, 103, 104mp2an 426 . . . . . . . . . . . . . 14 (abs‘2) = 2
106101, 105breqtrri 4057 . . . . . . . . . . . . 13 1 < (abs‘2)
107106a1i 9 . . . . . . . . . . . 12 (⊤ → 1 < (abs‘2))
10886, 107, 95georeclim 11659 . . . . . . . . . . 11 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 / (2 − 1)))
109 2m1e1 9102 . . . . . . . . . . . . 13 (2 − 1) = 1
110109oveq2i 5930 . . . . . . . . . . . 12 (2 / (2 − 1)) = (2 / 1)
111 2cn 9055 . . . . . . . . . . . . 13 2 ∈ ℂ
112111div1i 8761 . . . . . . . . . . . 12 (2 / 1) = 2
113110, 112eqtri 2214 . . . . . . . . . . 11 (2 / (2 − 1)) = 2
114108, 113breqtrdi 4071 . . . . . . . . . 10 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 2)
1152, 77, 100, 114clim2ser 11483 . . . . . . . . 9 (⊤ → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)))
116 seqeq1 10524 . . . . . . . . . 10 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))))
11780, 116ax-mp 5 . . . . . . . . 9 seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
1186adantl 277 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
11994, 90eqeltrd 2270 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℝ)
120118, 119syl 14 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℝ)
12120, 120, 18seq3-1 10536 . . . . . . . . . . . . 13 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0))
122 halfcn 9199 . . . . . . . . . . . . . . . . 17 (1 / 2) ∈ ℂ
123 exp0 10617 . . . . . . . . . . . . . . . . 17 ((1 / 2) ∈ ℂ → ((1 / 2)↑0) = 1)
124122, 123ax-mp 5 . . . . . . . . . . . . . . . 16 ((1 / 2)↑0) = 1
125124, 35eqeltri 2266 . . . . . . . . . . . . . . 15 ((1 / 2)↑0) ∈ ℕ0
126 oveq2 5927 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → ((1 / 2)↑𝑛) = ((1 / 2)↑0))
127126, 92fvmptg 5634 . . . . . . . . . . . . . . 15 ((0 ∈ ℕ0 ∧ ((1 / 2)↑0) ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0))
1281, 125, 127mp2an 426 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0)
129128, 124eqtri 2214 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1
130121, 129eqtrdi 2242 . . . . . . . . . . . 12 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1)
131130mptru 1373 . . . . . . . . . . 11 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1
132131oveq2i 5930 . . . . . . . . . 10 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = (2 − 1)
133132, 109eqtri 2214 . . . . . . . . 9 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = 1
134115, 117, 1333brtr3g 4063 . . . . . . . 8 (⊤ → seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 1)
135 nnnn0 9250 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
136135, 100sylan2 286 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
137102a1i 9 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℝ)
138135, 90syl 14 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) ∈ ℝ)
139137, 138remulcld 8052 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
14091oveq2d 5935 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · ((1 / 2)↑𝑛)) = (2 · ((1 / 2)↑𝑘)))
141 erelem1.1 . . . . . . . . . . . 12 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
142140, 141fvmptg 5634 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ (2 · ((1 / 2)↑𝑘)) ∈ ℝ) → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
143139, 142mpdan 421 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
144143adantl 277 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
145135, 95sylan2 286 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
146145oveq2d 5935 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)) = (2 · ((1 / 2)↑𝑘)))
147144, 146eqtr4d 2229 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)))
14875, 76, 86, 134, 136, 147isermulc2 11486 . . . . . . 7 (⊤ → seq1( + , 𝐹) ⇝ (2 · 1))
149 2t1e2 9138 . . . . . . 7 (2 · 1) = 2
150148, 149breqtrdi 4071 . . . . . 6 (⊤ → seq1( + , 𝐹) ⇝ 2)
151135, 63sylan2 286 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
152 remulcl 8002 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
153102, 98, 152sylancr 414 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
154135, 153sylan2 286 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
155144, 154eqeltrd 2270 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
156 faclbnd2 10816 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) / 2) ≤ (!‘𝑘))
157156adantl 277 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ≤ (!‘𝑘))
158 2nn 9146 . . . . . . . . . . . . . 14 2 ∈ ℕ
159 nnexpcl 10626 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
160158, 96, 159sylancr 414 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
161160nnrpd 9763 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
162161rphalfcld 9778 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ∈ ℝ+)
16361nnrpd 9763 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
164162, 163lerecd 9785 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2↑𝑘) / 2) ≤ (!‘𝑘) ↔ (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2))))
165157, 164mpbid 147 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2)))
166 2cnd 9057 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
167160nncnd 8998 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℂ)
168160nnap0d 9030 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) # 0)
169166, 167, 168divrecapd 8814 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 / (2↑𝑘)) = (2 · (1 / (2↑𝑘))))
170 2ap0 9077 . . . . . . . . . . . 12 2 # 0
171170a1i 9 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 # 0)
172167, 166, 168, 171recdivapd 8828 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
173 nn0z 9340 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
174173adantl 277 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
175166, 171, 174exprecapd 10755 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
176175oveq2d 5935 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (2 · (1 / (2↑𝑘))))
177169, 172, 1763eqtr4rd 2237 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (1 / ((2↑𝑘) / 2)))
178165, 177breqtrrd 4058 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
179135, 178sylan2 286 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
180135, 60sylan2 286 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / (!‘𝑘)))
181179, 180, 1443brtr4d 4062 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
18275, 76, 85, 150, 151, 155, 181iserle 11488 . . . . 5 (⊤ → (e − 1) ≤ 2)
183182mptru 1373 . . . 4 (e − 1) ≤ 2
184 ere 11816 . . . . 5 e ∈ ℝ
185184, 66, 102lesubaddi 8527 . . . 4 ((e − 1) ≤ 2 ↔ e ≤ (2 + 1))
186183, 185mpbi 145 . . 3 e ≤ (2 + 1)
187 df-3 9044 . . 3 3 = (2 + 1)
188186, 187breqtrri 4057 . 2 e ≤ 3
18974, 188pm3.2i 272 1 (2 ≤ e ∧ e ≤ 3)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wtru 1365  wcel 2164   class class class wbr 4030  cmpt 4091  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192   # cap 8602   / cdiv 8693  cn 8984  2c2 9035  3c3 9036  0cn0 9243  cz 9320  cuz 9595  seqcseq 10521  cexp 10612  !cfa 10799  abscabs 11144  cli 11424  expce 11788  eceu 11789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-e 11795
This theorem is referenced by:  egt2lt3  11926
  Copyright terms: Public domain W3C validator