ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ege2le3 GIF version

Theorem ege2le3 11814
Description: Euler's constant e = 2.71828... is bounded by 2 and 3. (Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2014.)
Hypotheses
Ref Expression
erelem1.1 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
erelem1.2 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
Assertion
Ref Expression
ege2le3 (2 ≤ e ∧ e ≤ 3)

Proof of Theorem ege2le3
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0nn0 9255 . . . . . . . . 9 0 ∈ ℕ0
2 nn0uz 9627 . . . . . . . . 9 0 = (ℤ‘0)
31, 2eleqtri 2268 . . . . . . . 8 0 ∈ (ℤ‘0)
43a1i 9 . . . . . . 7 (⊤ → 0 ∈ (ℤ‘0))
5 elnn0uz 9630 . . . . . . . . . 10 (𝑘 ∈ ℕ0𝑘 ∈ (ℤ‘0))
65biimpri 133 . . . . . . . . 9 (𝑘 ∈ (ℤ‘0) → 𝑘 ∈ ℕ0)
7 faccl 10806 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
87nnrecred 9029 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → (1 / (!‘𝑘)) ∈ ℝ)
9 fveq2 5554 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
109oveq2d 5934 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
11 erelem1.2 . . . . . . . . . . . 12 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
1210, 11fvmptg 5633 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0 ∧ (1 / (!‘𝑘)) ∈ ℝ) → (𝐺𝑘) = (1 / (!‘𝑘)))
138, 12mpdan 421 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (𝐺𝑘) = (1 / (!‘𝑘)))
1413, 8eqeltrd 2270 . . . . . . . . 9 (𝑘 ∈ ℕ0 → (𝐺𝑘) ∈ ℝ)
156, 14syl 14 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) → (𝐺𝑘) ∈ ℝ)
1615adantl 277 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ (ℤ‘0)) → (𝐺𝑘) ∈ ℝ)
17 readdcl 7998 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ)
1817adantl 277 . . . . . . 7 ((⊤ ∧ (𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑘 + 𝑦) ∈ ℝ)
194, 16, 18seq3p1 10536 . . . . . 6 (⊤ → (seq0( + , 𝐺)‘(0 + 1)) = ((seq0( + , 𝐺)‘0) + (𝐺‘(0 + 1))))
20 0zd 9329 . . . . . . . . 9 (⊤ → 0 ∈ ℤ)
2120, 16, 18seq3-1 10533 . . . . . . . 8 (⊤ → (seq0( + , 𝐺)‘0) = (𝐺‘0))
22 fveq2 5554 . . . . . . . . . . . . 13 (𝑛 = 0 → (!‘𝑛) = (!‘0))
23 fac0 10799 . . . . . . . . . . . . 13 (!‘0) = 1
2422, 23eqtrdi 2242 . . . . . . . . . . . 12 (𝑛 = 0 → (!‘𝑛) = 1)
2524oveq2d 5934 . . . . . . . . . . 11 (𝑛 = 0 → (1 / (!‘𝑛)) = (1 / 1))
26 ax-1cn 7965 . . . . . . . . . . . 12 1 ∈ ℂ
2726div1i 8759 . . . . . . . . . . 11 (1 / 1) = 1
2825, 27eqtrdi 2242 . . . . . . . . . 10 (𝑛 = 0 → (1 / (!‘𝑛)) = 1)
29 1ex 8014 . . . . . . . . . 10 1 ∈ V
3028, 11, 29fvmpt 5634 . . . . . . . . 9 (0 ∈ ℕ0 → (𝐺‘0) = 1)
311, 30mp1i 10 . . . . . . . 8 (⊤ → (𝐺‘0) = 1)
3221, 31eqtrd 2226 . . . . . . 7 (⊤ → (seq0( + , 𝐺)‘0) = 1)
33 1e0p1 9489 . . . . . . . . 9 1 = (0 + 1)
3433fveq2i 5557 . . . . . . . 8 (𝐺‘1) = (𝐺‘(0 + 1))
35 1nn0 9256 . . . . . . . . 9 1 ∈ ℕ0
36 fveq2 5554 . . . . . . . . . . . . 13 (𝑛 = 1 → (!‘𝑛) = (!‘1))
37 fac1 10800 . . . . . . . . . . . . 13 (!‘1) = 1
3836, 37eqtrdi 2242 . . . . . . . . . . . 12 (𝑛 = 1 → (!‘𝑛) = 1)
3938oveq2d 5934 . . . . . . . . . . 11 (𝑛 = 1 → (1 / (!‘𝑛)) = (1 / 1))
4039, 27eqtrdi 2242 . . . . . . . . . 10 (𝑛 = 1 → (1 / (!‘𝑛)) = 1)
4140, 11, 29fvmpt 5634 . . . . . . . . 9 (1 ∈ ℕ0 → (𝐺‘1) = 1)
4235, 41mp1i 10 . . . . . . . 8 (⊤ → (𝐺‘1) = 1)
4334, 42eqtr3id 2240 . . . . . . 7 (⊤ → (𝐺‘(0 + 1)) = 1)
4432, 43oveq12d 5936 . . . . . 6 (⊤ → ((seq0( + , 𝐺)‘0) + (𝐺‘(0 + 1))) = (1 + 1))
4519, 44eqtrd 2226 . . . . 5 (⊤ → (seq0( + , 𝐺)‘(0 + 1)) = (1 + 1))
4633fveq2i 5557 . . . . 5 (seq0( + , 𝐺)‘1) = (seq0( + , 𝐺)‘(0 + 1))
47 df-2 9041 . . . . 5 2 = (1 + 1)
4845, 46, 473eqtr4g 2251 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) = 2)
4935a1i 9 . . . . 5 (⊤ → 1 ∈ ℕ0)
50 nn0z 9337 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
51 1exp 10639 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
5250, 51syl 14 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
5352oveq1d 5933 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
5453mpteq2ia 4115 . . . . . . . . 9 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
5511, 54eqtr4i 2217 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
5655efcvg 11809 . . . . . . 7 (1 ∈ ℂ → seq0( + , 𝐺) ⇝ (exp‘1))
5726, 56mp1i 10 . . . . . 6 (⊤ → seq0( + , 𝐺) ⇝ (exp‘1))
58 df-e 11792 . . . . . 6 e = (exp‘1)
5957, 58breqtrrdi 4071 . . . . 5 (⊤ → seq0( + , 𝐺) ⇝ e)
6013adantl 277 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = (1 / (!‘𝑘)))
617adantl 277 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
6261nnrecred 9029 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ)
6360, 62eqeltrd 2270 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℝ)
6461nnred 8995 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ)
6561nngt0d 9026 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 < (!‘𝑘))
66 1re 8018 . . . . . . . 8 1 ∈ ℝ
67 0le1 8500 . . . . . . . 8 0 ≤ 1
68 divge0 8892 . . . . . . . 8 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (1 / (!‘𝑘)))
6966, 67, 68mpanl12 436 . . . . . . 7 (((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘)) → 0 ≤ (1 / (!‘𝑘)))
7064, 65, 69syl2anc 411 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (1 / (!‘𝑘)))
7170, 60breqtrrd 4057 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ0) → 0 ≤ (𝐺𝑘))
722, 49, 59, 63, 71climserle 11488 . . . 4 (⊤ → (seq0( + , 𝐺)‘1) ≤ e)
7348, 72eqbrtrrd 4053 . . 3 (⊤ → 2 ≤ e)
7473mptru 1373 . 2 2 ≤ e
75 nnuz 9628 . . . . . 6 ℕ = (ℤ‘1)
76 1zzd 9344 . . . . . 6 (⊤ → 1 ∈ ℤ)
771a1i 9 . . . . . . . 8 (⊤ → 0 ∈ ℕ0)
7863recnd 8048 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
792, 77, 78, 59clim2ser 11480 . . . . . . 7 (⊤ → seq(0 + 1)( + , 𝐺) ⇝ (e − (seq0( + , 𝐺)‘0)))
80 0p1e1 9096 . . . . . . . 8 (0 + 1) = 1
81 seqeq1 10521 . . . . . . . 8 ((0 + 1) = 1 → seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺))
8280, 81ax-mp 5 . . . . . . 7 seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺)
8332mptru 1373 . . . . . . . 8 (seq0( + , 𝐺)‘0) = 1
8483oveq2i 5929 . . . . . . 7 (e − (seq0( + , 𝐺)‘0)) = (e − 1)
8579, 82, 843brtr3g 4062 . . . . . 6 (⊤ → seq1( + , 𝐺) ⇝ (e − 1))
86 2cnd 9055 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
87 halfre 9195 . . . . . . . . . . . . . . 15 (1 / 2) ∈ ℝ
8887a1i 9 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (1 / 2) ∈ ℝ)
89 id 19 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0)
9088, 89reexpcld 10761 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → ((1 / 2)↑𝑘) ∈ ℝ)
91 oveq2 5926 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘))
92 eqid 2193 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))
9391, 92fvmptg 5633 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ ((1 / 2)↑𝑘) ∈ ℝ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
9490, 93mpdan 421 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
9594adantl 277 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
96 simpr 110 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
97 reexpcl 10627 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
9887, 96, 97sylancr 414 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ)
9998recnd 8048 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℂ)
10095, 99eqeltrd 2270 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
101 1lt2 9151 . . . . . . . . . . . . . 14 1 < 2
102 2re 9052 . . . . . . . . . . . . . . 15 2 ∈ ℝ
103 0le2 9072 . . . . . . . . . . . . . . 15 0 ≤ 2
104 absid 11215 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
105102, 103, 104mp2an 426 . . . . . . . . . . . . . 14 (abs‘2) = 2
106101, 105breqtrri 4056 . . . . . . . . . . . . 13 1 < (abs‘2)
107106a1i 9 . . . . . . . . . . . 12 (⊤ → 1 < (abs‘2))
10886, 107, 95georeclim 11656 . . . . . . . . . . 11 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 / (2 − 1)))
109 2m1e1 9100 . . . . . . . . . . . . 13 (2 − 1) = 1
110109oveq2i 5929 . . . . . . . . . . . 12 (2 / (2 − 1)) = (2 / 1)
111 2cn 9053 . . . . . . . . . . . . 13 2 ∈ ℂ
112111div1i 8759 . . . . . . . . . . . 12 (2 / 1) = 2
113110, 112eqtri 2214 . . . . . . . . . . 11 (2 / (2 − 1)) = 2
114108, 113breqtrdi 4070 . . . . . . . . . 10 (⊤ → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 2)
1152, 77, 100, 114clim2ser 11480 . . . . . . . . 9 (⊤ → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)))
116 seqeq1 10521 . . . . . . . . . 10 ((0 + 1) = 1 → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))))
11780, 116ax-mp 5 . . . . . . . . 9 seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))
1186adantl 277 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
11994, 90eqeltrd 2270 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℝ)
120118, 119syl 14 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ (ℤ‘0)) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℝ)
12120, 120, 18seq3-1 10533 . . . . . . . . . . . . 13 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0))
122 halfcn 9196 . . . . . . . . . . . . . . . . 17 (1 / 2) ∈ ℂ
123 exp0 10614 . . . . . . . . . . . . . . . . 17 ((1 / 2) ∈ ℂ → ((1 / 2)↑0) = 1)
124122, 123ax-mp 5 . . . . . . . . . . . . . . . 16 ((1 / 2)↑0) = 1
125124, 35eqeltri 2266 . . . . . . . . . . . . . . 15 ((1 / 2)↑0) ∈ ℕ0
126 oveq2 5926 . . . . . . . . . . . . . . . 16 (𝑛 = 0 → ((1 / 2)↑𝑛) = ((1 / 2)↑0))
127126, 92fvmptg 5633 . . . . . . . . . . . . . . 15 ((0 ∈ ℕ0 ∧ ((1 / 2)↑0) ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0))
1281, 125, 127mp2an 426 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 / 2)↑0)
129128, 124eqtri 2214 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = 1
130121, 129eqtrdi 2242 . . . . . . . . . . . 12 (⊤ → (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1)
131130mptru 1373 . . . . . . . . . . 11 (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1
132131oveq2i 5929 . . . . . . . . . 10 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = (2 − 1)
133132, 109eqtri 2214 . . . . . . . . 9 (2 − (seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = 1
134115, 117, 1333brtr3g 4062 . . . . . . . 8 (⊤ → seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 1)
135 nnnn0 9247 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
136135, 100sylan2 286 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ)
137102a1i 9 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℝ)
138135, 90syl 14 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → ((1 / 2)↑𝑘) ∈ ℝ)
139137, 138remulcld 8050 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
14091oveq2d 5934 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (2 · ((1 / 2)↑𝑛)) = (2 · ((1 / 2)↑𝑘)))
141 erelem1.1 . . . . . . . . . . . 12 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 / 2)↑𝑛)))
142140, 141fvmptg 5633 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ (2 · ((1 / 2)↑𝑘)) ∈ ℝ) → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
143139, 142mpdan 421 . . . . . . . . . 10 (𝑘 ∈ ℕ → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
144143adantl 277 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((1 / 2)↑𝑘)))
145135, 95sylan2 286 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘))
146145oveq2d 5934 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)) = (2 · ((1 / 2)↑𝑘)))
147144, 146eqtr4d 2229 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (2 · ((𝑛 ∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘)))
14875, 76, 86, 134, 136, 147isermulc2 11483 . . . . . . 7 (⊤ → seq1( + , 𝐹) ⇝ (2 · 1))
149 2t1e2 9135 . . . . . . 7 (2 · 1) = 2
150148, 149breqtrdi 4070 . . . . . 6 (⊤ → seq1( + , 𝐹) ⇝ 2)
151135, 63sylan2 286 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
152 remulcl 8000 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
153102, 98, 152sylancr 414 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
154135, 153sylan2 286 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ)
155144, 154eqeltrd 2270 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
156 faclbnd2 10813 . . . . . . . . . . 11 (𝑘 ∈ ℕ0 → ((2↑𝑘) / 2) ≤ (!‘𝑘))
157156adantl 277 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ≤ (!‘𝑘))
158 2nn 9143 . . . . . . . . . . . . . 14 2 ∈ ℕ
159 nnexpcl 10623 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
160158, 96, 159sylancr 414 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
161160nnrpd 9760 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℝ+)
162161rphalfcld 9775 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((2↑𝑘) / 2) ∈ ℝ+)
16361nnrpd 9760 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
164162, 163lerecd 9782 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (((2↑𝑘) / 2) ≤ (!‘𝑘) ↔ (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2))))
165157, 164mpbid 147 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2)))
166 2cnd 9055 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℂ)
167160nncnd 8996 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℂ)
168160nnap0d 9028 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) # 0)
169166, 167, 168divrecapd 8812 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 / (2↑𝑘)) = (2 · (1 / (2↑𝑘))))
170 2ap0 9075 . . . . . . . . . . . 12 2 # 0
171170a1i 9 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → 2 # 0)
172167, 166, 168, 171recdivapd 8826 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘)))
173 nn0z 9337 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
174173adantl 277 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
175166, 171, 174exprecapd 10752 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ0) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘)))
176175oveq2d 5934 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (2 · (1 / (2↑𝑘))))
177169, 172, 1763eqtr4rd 2237 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (1 / ((2↑𝑘) / 2)))
178165, 177breqtrrd 4057 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
179135, 178sylan2 286 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘)))
180135, 60sylan2 286 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (1 / (!‘𝑘)))
181179, 180, 1443brtr4d 4061 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐹𝑘))
18275, 76, 85, 150, 151, 155, 181iserle 11485 . . . . 5 (⊤ → (e − 1) ≤ 2)
183182mptru 1373 . . . 4 (e − 1) ≤ 2
184 ere 11813 . . . . 5 e ∈ ℝ
185184, 66, 102lesubaddi 8525 . . . 4 ((e − 1) ≤ 2 ↔ e ≤ (2 + 1))
186183, 185mpbi 145 . . 3 e ≤ (2 + 1)
187 df-3 9042 . . 3 3 = (2 + 1)
188186, 187breqtrri 4056 . 2 e ≤ 3
18974, 188pm3.2i 272 1 (2 ≤ e ∧ e ≤ 3)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wtru 1365  wcel 2164   class class class wbr 4029  cmpt 4090  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  3c3 9034  0cn0 9240  cz 9317  cuz 9592  seqcseq 10518  cexp 10609  !cfa 10796  abscabs 11141  cli 11421  expce 11785  eceu 11786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-e 11792
This theorem is referenced by:  egt2lt3  11923
  Copyright terms: Public domain W3C validator