| Step | Hyp | Ref
| Expression |
| 1 | | 0nn0 9264 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
| 2 | | nn0uz 9636 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
| 3 | 1, 2 | eleqtri 2271 |
. . . . . . . 8
⊢ 0 ∈
(ℤ≥‘0) |
| 4 | 3 | a1i 9 |
. . . . . . 7
⊢ (⊤
→ 0 ∈ (ℤ≥‘0)) |
| 5 | | elnn0uz 9639 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
↔ 𝑘 ∈
(ℤ≥‘0)) |
| 6 | 5 | biimpri 133 |
. . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘0) → 𝑘 ∈ ℕ0) |
| 7 | | faccl 10827 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
| 8 | 7 | nnrecred 9037 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ (1 / (!‘𝑘))
∈ ℝ) |
| 9 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘)) |
| 10 | 9 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘))) |
| 11 | | erelem1.2 |
. . . . . . . . . . . 12
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 /
(!‘𝑛))) |
| 12 | 10, 11 | fvmptg 5637 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ0
∧ (1 / (!‘𝑘))
∈ ℝ) → (𝐺‘𝑘) = (1 / (!‘𝑘))) |
| 13 | 8, 12 | mpdan 421 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝐺‘𝑘) = (1 / (!‘𝑘))) |
| 14 | 13, 8 | eqeltrd 2273 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (𝐺‘𝑘) ∈
ℝ) |
| 15 | 6, 14 | syl 14 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘0) → (𝐺‘𝑘) ∈ ℝ) |
| 16 | 15 | adantl 277 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ (ℤ≥‘0)) → (𝐺‘𝑘) ∈ ℝ) |
| 17 | | readdcl 8005 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑘 + 𝑦) ∈ ℝ) |
| 18 | 17 | adantl 277 |
. . . . . . 7
⊢
((⊤ ∧ (𝑘
∈ ℝ ∧ 𝑦
∈ ℝ)) → (𝑘
+ 𝑦) ∈
ℝ) |
| 19 | 4, 16, 18 | seq3p1 10557 |
. . . . . 6
⊢ (⊤
→ (seq0( + , 𝐺)‘(0 + 1)) = ((seq0( + , 𝐺)‘0) + (𝐺‘(0 + 1)))) |
| 20 | | 0zd 9338 |
. . . . . . . . 9
⊢ (⊤
→ 0 ∈ ℤ) |
| 21 | 20, 16, 18 | seq3-1 10554 |
. . . . . . . 8
⊢ (⊤
→ (seq0( + , 𝐺)‘0) = (𝐺‘0)) |
| 22 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 0 → (!‘𝑛) =
(!‘0)) |
| 23 | | fac0 10820 |
. . . . . . . . . . . . 13
⊢
(!‘0) = 1 |
| 24 | 22, 23 | eqtrdi 2245 |
. . . . . . . . . . . 12
⊢ (𝑛 = 0 → (!‘𝑛) = 1) |
| 25 | 24 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ (𝑛 = 0 → (1 / (!‘𝑛)) = (1 / 1)) |
| 26 | | ax-1cn 7972 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
| 27 | 26 | div1i 8767 |
. . . . . . . . . . 11
⊢ (1 / 1) =
1 |
| 28 | 25, 27 | eqtrdi 2245 |
. . . . . . . . . 10
⊢ (𝑛 = 0 → (1 / (!‘𝑛)) = 1) |
| 29 | | 1ex 8021 |
. . . . . . . . . 10
⊢ 1 ∈
V |
| 30 | 28, 11, 29 | fvmpt 5638 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 → (𝐺‘0) = 1) |
| 31 | 1, 30 | mp1i 10 |
. . . . . . . 8
⊢ (⊤
→ (𝐺‘0) =
1) |
| 32 | 21, 31 | eqtrd 2229 |
. . . . . . 7
⊢ (⊤
→ (seq0( + , 𝐺)‘0) = 1) |
| 33 | | 1e0p1 9498 |
. . . . . . . . 9
⊢ 1 = (0 +
1) |
| 34 | 33 | fveq2i 5561 |
. . . . . . . 8
⊢ (𝐺‘1) = (𝐺‘(0 + 1)) |
| 35 | | 1nn0 9265 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
| 36 | | fveq2 5558 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (!‘𝑛) =
(!‘1)) |
| 37 | | fac1 10821 |
. . . . . . . . . . . . 13
⊢
(!‘1) = 1 |
| 38 | 36, 37 | eqtrdi 2245 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (!‘𝑛) = 1) |
| 39 | 38 | oveq2d 5938 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → (1 / (!‘𝑛)) = (1 / 1)) |
| 40 | 39, 27 | eqtrdi 2245 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (1 / (!‘𝑛)) = 1) |
| 41 | 40, 11, 29 | fvmpt 5638 |
. . . . . . . . 9
⊢ (1 ∈
ℕ0 → (𝐺‘1) = 1) |
| 42 | 35, 41 | mp1i 10 |
. . . . . . . 8
⊢ (⊤
→ (𝐺‘1) =
1) |
| 43 | 34, 42 | eqtr3id 2243 |
. . . . . . 7
⊢ (⊤
→ (𝐺‘(0 + 1)) =
1) |
| 44 | 32, 43 | oveq12d 5940 |
. . . . . 6
⊢ (⊤
→ ((seq0( + , 𝐺)‘0) + (𝐺‘(0 + 1))) = (1 + 1)) |
| 45 | 19, 44 | eqtrd 2229 |
. . . . 5
⊢ (⊤
→ (seq0( + , 𝐺)‘(0 + 1)) = (1 + 1)) |
| 46 | 33 | fveq2i 5561 |
. . . . 5
⊢ (seq0( +
, 𝐺)‘1) = (seq0( + ,
𝐺)‘(0 +
1)) |
| 47 | | df-2 9049 |
. . . . 5
⊢ 2 = (1 +
1) |
| 48 | 45, 46, 47 | 3eqtr4g 2254 |
. . . 4
⊢ (⊤
→ (seq0( + , 𝐺)‘1) = 2) |
| 49 | 35 | a1i 9 |
. . . . 5
⊢ (⊤
→ 1 ∈ ℕ0) |
| 50 | | nn0z 9346 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
| 51 | | 1exp 10660 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℤ →
(1↑𝑛) =
1) |
| 52 | 50, 51 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ (1↑𝑛) =
1) |
| 53 | 52 | oveq1d 5937 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ((1↑𝑛) /
(!‘𝑛)) = (1 /
(!‘𝑛))) |
| 54 | 53 | mpteq2ia 4119 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
↦ ((1↑𝑛) /
(!‘𝑛))) = (𝑛 ∈ ℕ0
↦ (1 / (!‘𝑛))) |
| 55 | 11, 54 | eqtr4i 2220 |
. . . . . . . 8
⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦
((1↑𝑛) /
(!‘𝑛))) |
| 56 | 55 | efcvg 11831 |
. . . . . . 7
⊢ (1 ∈
ℂ → seq0( + , 𝐺)
⇝ (exp‘1)) |
| 57 | 26, 56 | mp1i 10 |
. . . . . 6
⊢ (⊤
→ seq0( + , 𝐺) ⇝
(exp‘1)) |
| 58 | | df-e 11814 |
. . . . . 6
⊢ e =
(exp‘1) |
| 59 | 57, 58 | breqtrrdi 4075 |
. . . . 5
⊢ (⊤
→ seq0( + , 𝐺) ⇝
e) |
| 60 | 13 | adantl 277 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (𝐺‘𝑘) = (1 / (!‘𝑘))) |
| 61 | 7 | adantl 277 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (!‘𝑘) ∈ ℕ) |
| 62 | 61 | nnrecred 9037 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ) |
| 63 | 60, 62 | eqeltrd 2273 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (𝐺‘𝑘) ∈ ℝ) |
| 64 | 61 | nnred 9003 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (!‘𝑘) ∈ ℝ) |
| 65 | 61 | nngt0d 9034 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 0 < (!‘𝑘)) |
| 66 | | 1re 8025 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
| 67 | | 0le1 8508 |
. . . . . . . 8
⊢ 0 ≤
1 |
| 68 | | divge0 8900 |
. . . . . . . 8
⊢ (((1
∈ ℝ ∧ 0 ≤ 1) ∧ ((!‘𝑘) ∈ ℝ ∧ 0 < (!‘𝑘))) → 0 ≤ (1 /
(!‘𝑘))) |
| 69 | 66, 67, 68 | mpanl12 436 |
. . . . . . 7
⊢
(((!‘𝑘) ∈
ℝ ∧ 0 < (!‘𝑘)) → 0 ≤ (1 / (!‘𝑘))) |
| 70 | 64, 65, 69 | syl2anc 411 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 0 ≤ (1 / (!‘𝑘))) |
| 71 | 70, 60 | breqtrrd 4061 |
. . . . 5
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 0 ≤ (𝐺‘𝑘)) |
| 72 | 2, 49, 59, 63, 71 | climserle 11510 |
. . . 4
⊢ (⊤
→ (seq0( + , 𝐺)‘1) ≤ e) |
| 73 | 48, 72 | eqbrtrrd 4057 |
. . 3
⊢ (⊤
→ 2 ≤ e) |
| 74 | 73 | mptru 1373 |
. 2
⊢ 2 ≤
e |
| 75 | | nnuz 9637 |
. . . . . 6
⊢ ℕ =
(ℤ≥‘1) |
| 76 | | 1zzd 9353 |
. . . . . 6
⊢ (⊤
→ 1 ∈ ℤ) |
| 77 | 1 | a1i 9 |
. . . . . . . 8
⊢ (⊤
→ 0 ∈ ℕ0) |
| 78 | 63 | recnd 8055 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
| 79 | 2, 77, 78, 59 | clim2ser 11502 |
. . . . . . 7
⊢ (⊤
→ seq(0 + 1)( + , 𝐺)
⇝ (e − (seq0( + , 𝐺)‘0))) |
| 80 | | 0p1e1 9104 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
| 81 | | seqeq1 10542 |
. . . . . . . 8
⊢ ((0 + 1)
= 1 → seq(0 + 1)( + , 𝐺) = seq1( + , 𝐺)) |
| 82 | 80, 81 | ax-mp 5 |
. . . . . . 7
⊢ seq(0 +
1)( + , 𝐺) = seq1( + ,
𝐺) |
| 83 | 32 | mptru 1373 |
. . . . . . . 8
⊢ (seq0( +
, 𝐺)‘0) =
1 |
| 84 | 83 | oveq2i 5933 |
. . . . . . 7
⊢ (e
− (seq0( + , 𝐺)‘0)) = (e − 1) |
| 85 | 79, 82, 84 | 3brtr3g 4066 |
. . . . . 6
⊢ (⊤
→ seq1( + , 𝐺) ⇝
(e − 1)) |
| 86 | | 2cnd 9063 |
. . . . . . . 8
⊢ (⊤
→ 2 ∈ ℂ) |
| 87 | | halfre 9204 |
. . . . . . . . . . . . . . 15
⊢ (1 / 2)
∈ ℝ |
| 88 | 87 | a1i 9 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ (1 / 2) ∈ ℝ) |
| 89 | | id 19 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℕ0) |
| 90 | 88, 89 | reexpcld 10782 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ ((1 / 2)↑𝑘)
∈ ℝ) |
| 91 | | oveq2 5930 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → ((1 / 2)↑𝑛) = ((1 / 2)↑𝑘)) |
| 92 | | eqid 2196 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ0
↦ ((1 / 2)↑𝑛)) =
(𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)) |
| 93 | 91, 92 | fvmptg 5637 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈ ℕ0
∧ ((1 / 2)↑𝑘)
∈ ℝ) → ((𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘)) |
| 94 | 90, 93 | mpdan 421 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘)) |
| 95 | 94 | adantl 277 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘)) |
| 96 | | simpr 110 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 𝑘 ∈ ℕ0) |
| 97 | | reexpcl 10648 |
. . . . . . . . . . . . 13
⊢ (((1 / 2)
∈ ℝ ∧ 𝑘
∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ) |
| 98 | 87, 96, 97 | sylancr 414 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℝ) |
| 99 | 98 | recnd 8055 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((1 / 2)↑𝑘) ∈ ℂ) |
| 100 | 95, 99 | eqeltrd 2273 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑘) ∈
ℂ) |
| 101 | | 1lt2 9160 |
. . . . . . . . . . . . . 14
⊢ 1 <
2 |
| 102 | | 2re 9060 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
| 103 | | 0le2 9080 |
. . . . . . . . . . . . . . 15
⊢ 0 ≤
2 |
| 104 | | absid 11236 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) |
| 105 | 102, 103,
104 | mp2an 426 |
. . . . . . . . . . . . . 14
⊢
(abs‘2) = 2 |
| 106 | 101, 105 | breqtrri 4060 |
. . . . . . . . . . . . 13
⊢ 1 <
(abs‘2) |
| 107 | 106 | a1i 9 |
. . . . . . . . . . . 12
⊢ (⊤
→ 1 < (abs‘2)) |
| 108 | 86, 107, 95 | georeclim 11678 |
. . . . . . . . . . 11
⊢ (⊤
→ seq0( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 / (2 −
1))) |
| 109 | | 2m1e1 9108 |
. . . . . . . . . . . . 13
⊢ (2
− 1) = 1 |
| 110 | 109 | oveq2i 5933 |
. . . . . . . . . . . 12
⊢ (2 / (2
− 1)) = (2 / 1) |
| 111 | | 2cn 9061 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℂ |
| 112 | 111 | div1i 8767 |
. . . . . . . . . . . 12
⊢ (2 / 1) =
2 |
| 113 | 110, 112 | eqtri 2217 |
. . . . . . . . . . 11
⊢ (2 / (2
− 1)) = 2 |
| 114 | 108, 113 | breqtrdi 4074 |
. . . . . . . . . 10
⊢ (⊤
→ seq0( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 2) |
| 115 | 2, 77, 100, 114 | clim2ser 11502 |
. . . . . . . . 9
⊢ (⊤
→ seq(0 + 1)( + , (𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ (2 − (seq0( + , (𝑛 ∈ ℕ0
↦ ((1 / 2)↑𝑛)))‘0))) |
| 116 | | seqeq1 10542 |
. . . . . . . . . 10
⊢ ((0 + 1)
= 1 → seq(0 + 1)( + , (𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))) = seq1( + ,
(𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)))) |
| 117 | 80, 116 | ax-mp 5 |
. . . . . . . . 9
⊢ seq(0 +
1)( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))) = seq1( + , (𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))) |
| 118 | 6 | adantl 277 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑘
∈ (ℤ≥‘0)) → 𝑘 ∈ ℕ0) |
| 119 | 94, 90 | eqeltrd 2273 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℝ) |
| 120 | 118, 119 | syl 14 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑘
∈ (ℤ≥‘0)) → ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑘) ∈
ℝ) |
| 121 | 20, 120, 18 | seq3-1 10554 |
. . . . . . . . . . . . 13
⊢ (⊤
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘0)) |
| 122 | | halfcn 9205 |
. . . . . . . . . . . . . . . . 17
⊢ (1 / 2)
∈ ℂ |
| 123 | | exp0 10635 |
. . . . . . . . . . . . . . . . 17
⊢ ((1 / 2)
∈ ℂ → ((1 / 2)↑0) = 1) |
| 124 | 122, 123 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ ((1 /
2)↑0) = 1 |
| 125 | 124, 35 | eqeltri 2269 |
. . . . . . . . . . . . . . 15
⊢ ((1 /
2)↑0) ∈ ℕ0 |
| 126 | | oveq2 5930 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 0 → ((1 / 2)↑𝑛) = ((1 /
2)↑0)) |
| 127 | 126, 92 | fvmptg 5637 |
. . . . . . . . . . . . . . 15
⊢ ((0
∈ ℕ0 ∧ ((1 / 2)↑0) ∈ ℕ0)
→ ((𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))‘0) = ((1 /
2)↑0)) |
| 128 | 1, 125, 127 | mp2an 426 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
↦ ((1 / 2)↑𝑛))‘0) = ((1 /
2)↑0) |
| 129 | 128, 124 | eqtri 2217 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
↦ ((1 / 2)↑𝑛))‘0) = 1 |
| 130 | 121, 129 | eqtrdi 2245 |
. . . . . . . . . . . 12
⊢ (⊤
→ (seq0( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1) |
| 131 | 130 | mptru 1373 |
. . . . . . . . . . 11
⊢ (seq0( +
, (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛)))‘0) = 1 |
| 132 | 131 | oveq2i 5933 |
. . . . . . . . . 10
⊢ (2
− (seq0( + , (𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = (2 −
1) |
| 133 | 132, 109 | eqtri 2217 |
. . . . . . . . 9
⊢ (2
− (seq0( + , (𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛)))‘0)) = 1 |
| 134 | 115, 117,
133 | 3brtr3g 4066 |
. . . . . . . 8
⊢ (⊤
→ seq1( + , (𝑛 ∈
ℕ0 ↦ ((1 / 2)↑𝑛))) ⇝ 1) |
| 135 | | nnnn0 9256 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 136 | 135, 100 | sylan2 286 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) ∈ ℂ) |
| 137 | 102 | a1i 9 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 2 ∈
ℝ) |
| 138 | 135, 90 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → ((1 /
2)↑𝑘) ∈
ℝ) |
| 139 | 137, 138 | remulcld 8057 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → (2
· ((1 / 2)↑𝑘))
∈ ℝ) |
| 140 | 91 | oveq2d 5938 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (2 · ((1 / 2)↑𝑛)) = (2 · ((1 /
2)↑𝑘))) |
| 141 | | erelem1.1 |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 /
2)↑𝑛))) |
| 142 | 140, 141 | fvmptg 5637 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ (2
· ((1 / 2)↑𝑘))
∈ ℝ) → (𝐹‘𝑘) = (2 · ((1 / 2)↑𝑘))) |
| 143 | 139, 142 | mpdan 421 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = (2 · ((1 / 2)↑𝑘))) |
| 144 | 143 | adantl 277 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) = (2 · ((1 / 2)↑𝑘))) |
| 145 | 135, 95 | sylan2 286 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ0 ↦ ((1 / 2)↑𝑛))‘𝑘) = ((1 / 2)↑𝑘)) |
| 146 | 145 | oveq2d 5938 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑘)) = (2 · ((1 /
2)↑𝑘))) |
| 147 | 144, 146 | eqtr4d 2232 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) = (2 · ((𝑛 ∈ ℕ0 ↦ ((1 /
2)↑𝑛))‘𝑘))) |
| 148 | 75, 76, 86, 134, 136, 147 | isermulc2 11505 |
. . . . . . 7
⊢ (⊤
→ seq1( + , 𝐹) ⇝
(2 · 1)) |
| 149 | | 2t1e2 9144 |
. . . . . . 7
⊢ (2
· 1) = 2 |
| 150 | 148, 149 | breqtrdi 4074 |
. . . . . 6
⊢ (⊤
→ seq1( + , 𝐹) ⇝
2) |
| 151 | 135, 63 | sylan2 286 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
| 152 | | remulcl 8007 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ ((1 / 2)↑𝑘) ∈ ℝ) → (2 · ((1 /
2)↑𝑘)) ∈
ℝ) |
| 153 | 102, 98, 152 | sylancr 414 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ) |
| 154 | 135, 153 | sylan2 286 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (2 · ((1 / 2)↑𝑘)) ∈ ℝ) |
| 155 | 144, 154 | eqeltrd 2273 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) ∈ ℝ) |
| 156 | | faclbnd2 10834 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((2↑𝑘) / 2)
≤ (!‘𝑘)) |
| 157 | 156 | adantl 277 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((2↑𝑘) / 2) ≤ (!‘𝑘)) |
| 158 | | 2nn 9152 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ |
| 159 | | nnexpcl 10644 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℕ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
| 160 | 158, 96, 159 | sylancr 414 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℕ) |
| 161 | 160 | nnrpd 9769 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈
ℝ+) |
| 162 | 161 | rphalfcld 9784 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((2↑𝑘) / 2) ∈
ℝ+) |
| 163 | 61 | nnrpd 9769 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (!‘𝑘) ∈
ℝ+) |
| 164 | 162, 163 | lerecd 9791 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (((2↑𝑘) / 2) ≤ (!‘𝑘) ↔ (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2)))) |
| 165 | 157, 164 | mpbid 147 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (1 / (!‘𝑘)) ≤ (1 / ((2↑𝑘) / 2))) |
| 166 | | 2cnd 9063 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 2 ∈ ℂ) |
| 167 | 160 | nncnd 9004 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) ∈ ℂ) |
| 168 | 160 | nnap0d 9036 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2↑𝑘) # 0) |
| 169 | 166, 167,
168 | divrecapd 8820 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2 / (2↑𝑘)) = (2 · (1 / (2↑𝑘)))) |
| 170 | | 2ap0 9083 |
. . . . . . . . . . . 12
⊢ 2 #
0 |
| 171 | 170 | a1i 9 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 2 # 0) |
| 172 | 167, 166,
168, 171 | recdivapd 8834 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (1 / ((2↑𝑘) / 2)) = (2 / (2↑𝑘))) |
| 173 | | nn0z 9346 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
| 174 | 173 | adantl 277 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → 𝑘 ∈ ℤ) |
| 175 | 166, 171,
174 | exprecapd 10773 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → ((1 / 2)↑𝑘) = (1 / (2↑𝑘))) |
| 176 | 175 | oveq2d 5938 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (2 · (1 / (2↑𝑘)))) |
| 177 | 169, 172,
176 | 3eqtr4rd 2240 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (2 · ((1 / 2)↑𝑘)) = (1 / ((2↑𝑘) / 2))) |
| 178 | 165, 177 | breqtrrd 4061 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑘
∈ ℕ0) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘))) |
| 179 | 135, 178 | sylan2 286 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (1 / (!‘𝑘)) ≤ (2 · ((1 / 2)↑𝑘))) |
| 180 | 135, 60 | sylan2 286 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) = (1 / (!‘𝑘))) |
| 181 | 179, 180,
144 | 3brtr4d 4065 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ≤ (𝐹‘𝑘)) |
| 182 | 75, 76, 85, 150, 151, 155, 181 | iserle 11507 |
. . . . 5
⊢ (⊤
→ (e − 1) ≤ 2) |
| 183 | 182 | mptru 1373 |
. . . 4
⊢ (e
− 1) ≤ 2 |
| 184 | | ere 11835 |
. . . . 5
⊢ e ∈
ℝ |
| 185 | 184, 66, 102 | lesubaddi 8533 |
. . . 4
⊢ ((e
− 1) ≤ 2 ↔ e ≤ (2 + 1)) |
| 186 | 183, 185 | mpbi 145 |
. . 3
⊢ e ≤ (2
+ 1) |
| 187 | | df-3 9050 |
. . 3
⊢ 3 = (2 +
1) |
| 188 | 186, 187 | breqtrri 4060 |
. 2
⊢ e ≤
3 |
| 189 | 74, 188 | pm3.2i 272 |
1
⊢ (2 ≤ e
∧ e ≤ 3) |