![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > taupi | GIF version |
Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
Ref | Expression |
---|---|
taupi | ⊢ τ = (2 · π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tau 11797 | . 2 ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | |
2 | lttri3 8051 | . . . . 5 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
3 | 2 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
4 | 2re 9003 | . . . . . 6 ⊢ 2 ∈ ℝ | |
5 | pire 14503 | . . . . . 6 ⊢ π ∈ ℝ | |
6 | 4, 5 | remulcli 7985 | . . . . 5 ⊢ (2 · π) ∈ ℝ |
7 | 6 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ ℝ) |
8 | 2rp 9672 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
9 | pirp 14506 | . . . . . . 7 ⊢ π ∈ ℝ+ | |
10 | rpmulcl 9692 | . . . . . . 7 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
11 | 8, 9, 10 | mp2an 426 | . . . . . 6 ⊢ (2 · π) ∈ ℝ+ |
12 | 6 | recni 7983 | . . . . . . 7 ⊢ (2 · π) ∈ ℂ |
13 | cos2pi 14521 | . . . . . . 7 ⊢ (cos‘(2 · π)) = 1 | |
14 | cosf 11727 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
15 | ffn 5377 | . . . . . . . . 9 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ cos Fn ℂ |
17 | fniniseg 5649 | . . . . . . . 8 ⊢ (cos Fn ℂ → ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1))) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1)) |
19 | 12, 13, 18 | mpbir2an 943 | . . . . . 6 ⊢ (2 · π) ∈ (◡cos “ {1}) |
20 | 11, 19 | elini 3331 | . . . . 5 ⊢ (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1})) |
21 | 20 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1}))) |
22 | elinel2 3334 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ (◡cos “ {1})) | |
23 | fniniseg 5649 | . . . . . . . . . . 11 ⊢ (cos Fn ℂ → (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))) | |
24 | 16, 23 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
25 | 22, 24 | sylib 122 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
26 | 25 | simprd 114 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (cos‘𝑥) = 1) |
27 | 26 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) = 1) |
28 | elinel1 3333 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ+) | |
29 | 28 | rpred 9710 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ) |
30 | 29 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ ℝ) |
31 | 28 | rpgt0d 9713 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 0 < 𝑥) |
32 | 31 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 0 < 𝑥) |
33 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 < (2 · π)) | |
34 | 0xr 8018 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ* | |
35 | 6 | rexri 8029 | . . . . . . . . . 10 ⊢ (2 · π) ∈ ℝ* |
36 | elioo2 9935 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π)))) | |
37 | 34, 35, 36 | mp2an 426 | . . . . . . . . 9 ⊢ (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π))) |
38 | 30, 32, 33, 37 | syl3anbrc 1182 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ (0(,)(2 · π))) |
39 | cos02pilt1 14568 | . . . . . . . 8 ⊢ (𝑥 ∈ (0(,)(2 · π)) → (cos‘𝑥) < 1) | |
40 | 38, 39 | syl 14 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) < 1) |
41 | 27, 40 | eqbrtrrd 4039 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 < 1) |
42 | 1red 7986 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 ∈ ℝ) | |
43 | 42 | ltnrd 8083 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → ¬ 1 < 1) |
44 | 41, 43 | pm2.65da 662 | . . . . 5 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → ¬ 𝑥 < (2 · π)) |
45 | 44 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ+ ∩ (◡cos “ {1}))) → ¬ 𝑥 < (2 · π)) |
46 | 3, 7, 21, 45 | infminti 7040 | . . 3 ⊢ (⊤ → inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π)) |
47 | 46 | mptru 1372 | . 2 ⊢ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π) |
48 | 1, 47 | eqtri 2208 | 1 ⊢ τ = (2 · π) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∧ w3a 979 = wceq 1363 ⊤wtru 1364 ∈ wcel 2158 ∩ cin 3140 {csn 3604 class class class wbr 4015 ◡ccnv 4637 “ cima 4641 Fn wfn 5223 ⟶wf 5224 ‘cfv 5228 (class class class)co 5888 infcinf 6996 ℂcc 7823 ℝcr 7824 0cc0 7825 1c1 7826 · cmul 7830 ℝ*cxr 8005 < clt 8006 2c2 8984 ℝ+crp 9667 (,)cioo 9902 cosccos 11667 πcpi 11669 τctau 11796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 ax-pre-suploc 7946 ax-addf 7947 ax-mulf 7948 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-disj 3993 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-of 6097 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-frec 6406 df-1o 6431 df-oadd 6435 df-er 6549 df-map 6664 df-pm 6665 df-en 6755 df-dom 6756 df-fin 6757 df-sup 6997 df-inf 6998 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-9 8999 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-xneg 9786 df-xadd 9787 df-ioo 9906 df-ioc 9907 df-ico 9908 df-icc 9909 df-fz 10023 df-fzo 10157 df-seqfrec 10460 df-exp 10534 df-fac 10720 df-bc 10742 df-ihash 10770 df-shft 10838 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-clim 11301 df-sumdc 11376 df-ef 11670 df-sin 11672 df-cos 11673 df-pi 11675 df-tau 11797 df-rest 12708 df-topgen 12727 df-psmet 13729 df-xmet 13730 df-met 13731 df-bl 13732 df-mopn 13733 df-top 13794 df-topon 13807 df-bases 13839 df-ntr 13892 df-cn 13984 df-cnp 13985 df-tx 14049 df-cncf 14354 df-limced 14421 df-dvap 14422 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |