Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  taupi GIF version

Theorem taupi 15804
Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi τ = (2 · π)

Proof of Theorem taupi
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tau 11958 . 2 τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
2 lttri3 8123 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
32adantl 277 . . . 4 ((⊤ ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4 2re 9077 . . . . . 6 2 ∈ ℝ
5 pire 15106 . . . . . 6 π ∈ ℝ
64, 5remulcli 8057 . . . . 5 (2 · π) ∈ ℝ
76a1i 9 . . . 4 (⊤ → (2 · π) ∈ ℝ)
8 2rp 9750 . . . . . . 7 2 ∈ ℝ+
9 pirp 15109 . . . . . . 7 π ∈ ℝ+
10 rpmulcl 9770 . . . . . . 7 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
118, 9, 10mp2an 426 . . . . . 6 (2 · π) ∈ ℝ+
126recni 8055 . . . . . . 7 (2 · π) ∈ ℂ
13 cos2pi 15124 . . . . . . 7 (cos‘(2 · π)) = 1
14 cosf 11887 . . . . . . . . 9 cos:ℂ⟶ℂ
15 ffn 5410 . . . . . . . . 9 (cos:ℂ⟶ℂ → cos Fn ℂ)
1614, 15ax-mp 5 . . . . . . . 8 cos Fn ℂ
17 fniniseg 5685 . . . . . . . 8 (cos Fn ℂ → ((2 · π) ∈ (cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1)))
1816, 17ax-mp 5 . . . . . . 7 ((2 · π) ∈ (cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1))
1912, 13, 18mpbir2an 944 . . . . . 6 (2 · π) ∈ (cos “ {1})
2011, 19elini 3348 . . . . 5 (2 · π) ∈ (ℝ+ ∩ (cos “ {1}))
2120a1i 9 . . . 4 (⊤ → (2 · π) ∈ (ℝ+ ∩ (cos “ {1})))
22 elinel2 3351 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ (cos “ {1}))
23 fniniseg 5685 . . . . . . . . . . 11 (cos Fn ℂ → (𝑥 ∈ (cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)))
2416, 23ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))
2522, 24sylib 122 . . . . . . . . 9 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))
2625simprd 114 . . . . . . . 8 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (cos‘𝑥) = 1)
2726adantr 276 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) = 1)
28 elinel1 3350 . . . . . . . . . . 11 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ ℝ+)
2928rpred 9788 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ ℝ)
3029adantr 276 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ ℝ)
3128rpgt0d 9791 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 0 < 𝑥)
3231adantr 276 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 0 < 𝑥)
33 simpr 110 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 < (2 · π))
34 0xr 8090 . . . . . . . . . 10 0 ∈ ℝ*
356rexri 8101 . . . . . . . . . 10 (2 · π) ∈ ℝ*
36 elioo2 10013 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < (2 · π))))
3734, 35, 36mp2an 426 . . . . . . . . 9 (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < (2 · π)))
3830, 32, 33, 37syl3anbrc 1183 . . . . . . . 8 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ (0(,)(2 · π)))
39 cos02pilt1 15171 . . . . . . . 8 (𝑥 ∈ (0(,)(2 · π)) → (cos‘𝑥) < 1)
4038, 39syl 14 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) < 1)
4127, 40eqbrtrrd 4058 . . . . . 6 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 < 1)
42 1red 8058 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 ∈ ℝ)
4342ltnrd 8155 . . . . . 6 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → ¬ 1 < 1)
4441, 43pm2.65da 662 . . . . 5 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → ¬ 𝑥 < (2 · π))
4544adantl 277 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ+ ∩ (cos “ {1}))) → ¬ 𝑥 < (2 · π))
463, 7, 21, 45infminti 7102 . . 3 (⊤ → inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) = (2 · π))
4746mptru 1373 . 2 inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) = (2 · π)
481, 47eqtri 2217 1 τ = (2 · π)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3a 980   = wceq 1364  wtru 1365  wcel 2167  cin 3156  {csn 3623   class class class wbr 4034  ccnv 4663  cima 4667   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  infcinf 7058  cc 7894  cr 7895  0cc0 7896  1c1 7897   · cmul 7901  *cxr 8077   < clt 8078  2c2 9058  +crp 9745  (,)cioo 9980  cosccos 11827  πcpi 11829  τctau 11957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-pre-suploc 8017  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-ioo 9984  df-ioc 9985  df-ico 9986  df-icc 9987  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-bc 10857  df-ihash 10885  df-shft 10997  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-sin 11832  df-cos 11833  df-pi 11835  df-tau 11958  df-rest 12943  df-topgen 12962  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-top 14318  df-topon 14331  df-bases 14363  df-ntr 14416  df-cn 14508  df-cnp 14509  df-tx 14573  df-cncf 14891  df-limced 14976  df-dvap 14977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator