![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > taupi | GIF version |
Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
Ref | Expression |
---|---|
taupi | ⊢ τ = (2 · π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tau 11786 | . 2 ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | |
2 | lttri3 8040 | . . . . 5 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
3 | 2 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
4 | 2re 8992 | . . . . . 6 ⊢ 2 ∈ ℝ | |
5 | pire 14368 | . . . . . 6 ⊢ π ∈ ℝ | |
6 | 4, 5 | remulcli 7974 | . . . . 5 ⊢ (2 · π) ∈ ℝ |
7 | 6 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ ℝ) |
8 | 2rp 9661 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
9 | pirp 14371 | . . . . . . 7 ⊢ π ∈ ℝ+ | |
10 | rpmulcl 9681 | . . . . . . 7 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
11 | 8, 9, 10 | mp2an 426 | . . . . . 6 ⊢ (2 · π) ∈ ℝ+ |
12 | 6 | recni 7972 | . . . . . . 7 ⊢ (2 · π) ∈ ℂ |
13 | cos2pi 14386 | . . . . . . 7 ⊢ (cos‘(2 · π)) = 1 | |
14 | cosf 11716 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
15 | ffn 5367 | . . . . . . . . 9 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ cos Fn ℂ |
17 | fniniseg 5639 | . . . . . . . 8 ⊢ (cos Fn ℂ → ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1))) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1)) |
19 | 12, 13, 18 | mpbir2an 942 | . . . . . 6 ⊢ (2 · π) ∈ (◡cos “ {1}) |
20 | 11, 19 | elini 3321 | . . . . 5 ⊢ (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1})) |
21 | 20 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1}))) |
22 | elinel2 3324 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ (◡cos “ {1})) | |
23 | fniniseg 5639 | . . . . . . . . . . 11 ⊢ (cos Fn ℂ → (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))) | |
24 | 16, 23 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
25 | 22, 24 | sylib 122 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
26 | 25 | simprd 114 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (cos‘𝑥) = 1) |
27 | 26 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) = 1) |
28 | elinel1 3323 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ+) | |
29 | 28 | rpred 9699 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ) |
30 | 29 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ ℝ) |
31 | 28 | rpgt0d 9702 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 0 < 𝑥) |
32 | 31 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 0 < 𝑥) |
33 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 < (2 · π)) | |
34 | 0xr 8007 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ* | |
35 | 6 | rexri 8018 | . . . . . . . . . 10 ⊢ (2 · π) ∈ ℝ* |
36 | elioo2 9924 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π)))) | |
37 | 34, 35, 36 | mp2an 426 | . . . . . . . . 9 ⊢ (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π))) |
38 | 30, 32, 33, 37 | syl3anbrc 1181 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ (0(,)(2 · π))) |
39 | cos02pilt1 14433 | . . . . . . . 8 ⊢ (𝑥 ∈ (0(,)(2 · π)) → (cos‘𝑥) < 1) | |
40 | 38, 39 | syl 14 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) < 1) |
41 | 27, 40 | eqbrtrrd 4029 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 < 1) |
42 | 1red 7975 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 ∈ ℝ) | |
43 | 42 | ltnrd 8072 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → ¬ 1 < 1) |
44 | 41, 43 | pm2.65da 661 | . . . . 5 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → ¬ 𝑥 < (2 · π)) |
45 | 44 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ+ ∩ (◡cos “ {1}))) → ¬ 𝑥 < (2 · π)) |
46 | 3, 7, 21, 45 | infminti 7029 | . . 3 ⊢ (⊤ → inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π)) |
47 | 46 | mptru 1362 | . 2 ⊢ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π) |
48 | 1, 47 | eqtri 2198 | 1 ⊢ τ = (2 · π) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∧ w3a 978 = wceq 1353 ⊤wtru 1354 ∈ wcel 2148 ∩ cin 3130 {csn 3594 class class class wbr 4005 ◡ccnv 4627 “ cima 4631 Fn wfn 5213 ⟶wf 5214 ‘cfv 5218 (class class class)co 5878 infcinf 6985 ℂcc 7812 ℝcr 7813 0cc0 7814 1c1 7815 · cmul 7819 ℝ*cxr 7994 < clt 7995 2c2 8973 ℝ+crp 9656 (,)cioo 9891 cosccos 11656 πcpi 11658 τctau 11785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 ax-pre-mulext 7932 ax-arch 7933 ax-caucvg 7934 ax-pre-suploc 7935 ax-addf 7936 ax-mulf 7937 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-disj 3983 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-isom 5227 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-of 6086 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-frec 6395 df-1o 6420 df-oadd 6424 df-er 6538 df-map 6653 df-pm 6654 df-en 6744 df-dom 6745 df-fin 6746 df-sup 6986 df-inf 6987 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-div 8633 df-inn 8923 df-2 8981 df-3 8982 df-4 8983 df-5 8984 df-6 8985 df-7 8986 df-8 8987 df-9 8988 df-n0 9180 df-z 9257 df-uz 9532 df-q 9623 df-rp 9657 df-xneg 9775 df-xadd 9776 df-ioo 9895 df-ioc 9896 df-ico 9897 df-icc 9898 df-fz 10012 df-fzo 10146 df-seqfrec 10449 df-exp 10523 df-fac 10709 df-bc 10731 df-ihash 10759 df-shft 10827 df-cj 10854 df-re 10855 df-im 10856 df-rsqrt 11010 df-abs 11011 df-clim 11290 df-sumdc 11365 df-ef 11659 df-sin 11661 df-cos 11662 df-pi 11664 df-tau 11786 df-rest 12696 df-topgen 12715 df-psmet 13594 df-xmet 13595 df-met 13596 df-bl 13597 df-mopn 13598 df-top 13659 df-topon 13672 df-bases 13704 df-ntr 13757 df-cn 13849 df-cnp 13850 df-tx 13914 df-cncf 14219 df-limced 14286 df-dvap 14287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |