| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > taupi | GIF version | ||
| Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
| Ref | Expression |
|---|---|
| taupi | ⊢ τ = (2 · π) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tau 12137 | . 2 ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | |
| 2 | lttri3 8165 | . . . . 5 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
| 3 | 2 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 4 | 2re 9119 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 5 | pire 15308 | . . . . . 6 ⊢ π ∈ ℝ | |
| 6 | 4, 5 | remulcli 8099 | . . . . 5 ⊢ (2 · π) ∈ ℝ |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ ℝ) |
| 8 | 2rp 9793 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
| 9 | pirp 15311 | . . . . . . 7 ⊢ π ∈ ℝ+ | |
| 10 | rpmulcl 9813 | . . . . . . 7 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
| 11 | 8, 9, 10 | mp2an 426 | . . . . . 6 ⊢ (2 · π) ∈ ℝ+ |
| 12 | 6 | recni 8097 | . . . . . . 7 ⊢ (2 · π) ∈ ℂ |
| 13 | cos2pi 15326 | . . . . . . 7 ⊢ (cos‘(2 · π)) = 1 | |
| 14 | cosf 12066 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
| 15 | ffn 5432 | . . . . . . . . 9 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ cos Fn ℂ |
| 17 | fniniseg 5710 | . . . . . . . 8 ⊢ (cos Fn ℂ → ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1))) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1)) |
| 19 | 12, 13, 18 | mpbir2an 945 | . . . . . 6 ⊢ (2 · π) ∈ (◡cos “ {1}) |
| 20 | 11, 19 | elini 3359 | . . . . 5 ⊢ (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1})) |
| 21 | 20 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1}))) |
| 22 | elinel2 3362 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ (◡cos “ {1})) | |
| 23 | fniniseg 5710 | . . . . . . . . . . 11 ⊢ (cos Fn ℂ → (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))) | |
| 24 | 16, 23 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
| 25 | 22, 24 | sylib 122 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
| 26 | 25 | simprd 114 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (cos‘𝑥) = 1) |
| 27 | 26 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) = 1) |
| 28 | elinel1 3361 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ+) | |
| 29 | 28 | rpred 9831 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ) |
| 30 | 29 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ ℝ) |
| 31 | 28 | rpgt0d 9834 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 0 < 𝑥) |
| 32 | 31 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 0 < 𝑥) |
| 33 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 < (2 · π)) | |
| 34 | 0xr 8132 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ* | |
| 35 | 6 | rexri 8143 | . . . . . . . . . 10 ⊢ (2 · π) ∈ ℝ* |
| 36 | elioo2 10056 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π)))) | |
| 37 | 34, 35, 36 | mp2an 426 | . . . . . . . . 9 ⊢ (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π))) |
| 38 | 30, 32, 33, 37 | syl3anbrc 1184 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ (0(,)(2 · π))) |
| 39 | cos02pilt1 15373 | . . . . . . . 8 ⊢ (𝑥 ∈ (0(,)(2 · π)) → (cos‘𝑥) < 1) | |
| 40 | 38, 39 | syl 14 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) < 1) |
| 41 | 27, 40 | eqbrtrrd 4072 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 < 1) |
| 42 | 1red 8100 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 ∈ ℝ) | |
| 43 | 42 | ltnrd 8197 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → ¬ 1 < 1) |
| 44 | 41, 43 | pm2.65da 663 | . . . . 5 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → ¬ 𝑥 < (2 · π)) |
| 45 | 44 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ+ ∩ (◡cos “ {1}))) → ¬ 𝑥 < (2 · π)) |
| 46 | 3, 7, 21, 45 | infminti 7141 | . . 3 ⊢ (⊤ → inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π)) |
| 47 | 46 | mptru 1382 | . 2 ⊢ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π) |
| 48 | 1, 47 | eqtri 2227 | 1 ⊢ τ = (2 · π) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 ∩ cin 3167 {csn 3635 class class class wbr 4048 ◡ccnv 4679 “ cima 4683 Fn wfn 5272 ⟶wf 5273 ‘cfv 5277 (class class class)co 5954 infcinf 7097 ℂcc 7936 ℝcr 7937 0cc0 7938 1c1 7939 · cmul 7943 ℝ*cxr 8119 < clt 8120 2c2 9100 ℝ+crp 9788 (,)cioo 10023 cosccos 12006 πcpi 12008 τctau 12136 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 ax-pre-suploc 8059 ax-addf 8060 ax-mulf 8061 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-disj 4025 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-of 6168 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-frec 6487 df-1o 6512 df-oadd 6516 df-er 6630 df-map 6747 df-pm 6748 df-en 6838 df-dom 6839 df-fin 6840 df-sup 7098 df-inf 7099 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-9 9115 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-xneg 9907 df-xadd 9908 df-ioo 10027 df-ioc 10028 df-ico 10029 df-icc 10030 df-fz 10144 df-fzo 10278 df-seqfrec 10606 df-exp 10697 df-fac 10884 df-bc 10906 df-ihash 10934 df-shft 11176 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-clim 11640 df-sumdc 11715 df-ef 12009 df-sin 12011 df-cos 12012 df-pi 12014 df-tau 12137 df-rest 13123 df-topgen 13142 df-psmet 14355 df-xmet 14356 df-met 14357 df-bl 14358 df-mopn 14359 df-top 14520 df-topon 14533 df-bases 14565 df-ntr 14618 df-cn 14710 df-cnp 14711 df-tx 14775 df-cncf 15093 df-limced 15178 df-dvap 15179 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |