Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  taupi GIF version

Theorem taupi 15830
Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi τ = (2 · π)

Proof of Theorem taupi
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tau 11960 . 2 τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
2 lttri3 8125 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
32adantl 277 . . . 4 ((⊤ ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4 2re 9079 . . . . . 6 2 ∈ ℝ
5 pire 15130 . . . . . 6 π ∈ ℝ
64, 5remulcli 8059 . . . . 5 (2 · π) ∈ ℝ
76a1i 9 . . . 4 (⊤ → (2 · π) ∈ ℝ)
8 2rp 9752 . . . . . . 7 2 ∈ ℝ+
9 pirp 15133 . . . . . . 7 π ∈ ℝ+
10 rpmulcl 9772 . . . . . . 7 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
118, 9, 10mp2an 426 . . . . . 6 (2 · π) ∈ ℝ+
126recni 8057 . . . . . . 7 (2 · π) ∈ ℂ
13 cos2pi 15148 . . . . . . 7 (cos‘(2 · π)) = 1
14 cosf 11889 . . . . . . . . 9 cos:ℂ⟶ℂ
15 ffn 5410 . . . . . . . . 9 (cos:ℂ⟶ℂ → cos Fn ℂ)
1614, 15ax-mp 5 . . . . . . . 8 cos Fn ℂ
17 fniniseg 5685 . . . . . . . 8 (cos Fn ℂ → ((2 · π) ∈ (cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1)))
1816, 17ax-mp 5 . . . . . . 7 ((2 · π) ∈ (cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1))
1912, 13, 18mpbir2an 944 . . . . . 6 (2 · π) ∈ (cos “ {1})
2011, 19elini 3348 . . . . 5 (2 · π) ∈ (ℝ+ ∩ (cos “ {1}))
2120a1i 9 . . . 4 (⊤ → (2 · π) ∈ (ℝ+ ∩ (cos “ {1})))
22 elinel2 3351 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ (cos “ {1}))
23 fniniseg 5685 . . . . . . . . . . 11 (cos Fn ℂ → (𝑥 ∈ (cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)))
2416, 23ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))
2522, 24sylib 122 . . . . . . . . 9 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))
2625simprd 114 . . . . . . . 8 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (cos‘𝑥) = 1)
2726adantr 276 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) = 1)
28 elinel1 3350 . . . . . . . . . . 11 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ ℝ+)
2928rpred 9790 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ ℝ)
3029adantr 276 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ ℝ)
3128rpgt0d 9793 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 0 < 𝑥)
3231adantr 276 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 0 < 𝑥)
33 simpr 110 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 < (2 · π))
34 0xr 8092 . . . . . . . . . 10 0 ∈ ℝ*
356rexri 8103 . . . . . . . . . 10 (2 · π) ∈ ℝ*
36 elioo2 10015 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < (2 · π))))
3734, 35, 36mp2an 426 . . . . . . . . 9 (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < (2 · π)))
3830, 32, 33, 37syl3anbrc 1183 . . . . . . . 8 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ (0(,)(2 · π)))
39 cos02pilt1 15195 . . . . . . . 8 (𝑥 ∈ (0(,)(2 · π)) → (cos‘𝑥) < 1)
4038, 39syl 14 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) < 1)
4127, 40eqbrtrrd 4058 . . . . . 6 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 < 1)
42 1red 8060 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 ∈ ℝ)
4342ltnrd 8157 . . . . . 6 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → ¬ 1 < 1)
4441, 43pm2.65da 662 . . . . 5 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → ¬ 𝑥 < (2 · π))
4544adantl 277 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ+ ∩ (cos “ {1}))) → ¬ 𝑥 < (2 · π))
463, 7, 21, 45infminti 7102 . . 3 (⊤ → inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) = (2 · π))
4746mptru 1373 . 2 inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) = (2 · π)
481, 47eqtri 2217 1 τ = (2 · π)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3a 980   = wceq 1364  wtru 1365  wcel 2167  cin 3156  {csn 3623   class class class wbr 4034  ccnv 4663  cima 4667   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  infcinf 7058  cc 7896  cr 7897  0cc0 7898  1c1 7899   · cmul 7903  *cxr 8079   < clt 8080  2c2 9060  +crp 9747  (,)cioo 9982  cosccos 11829  πcpi 11831  τctau 11959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018  ax-pre-suploc 8019  ax-addf 8020  ax-mulf 8021
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-xneg 9866  df-xadd 9867  df-ioo 9986  df-ioc 9987  df-ico 9988  df-icc 9989  df-fz 10103  df-fzo 10237  df-seqfrec 10559  df-exp 10650  df-fac 10837  df-bc 10859  df-ihash 10887  df-shft 10999  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-clim 11463  df-sumdc 11538  df-ef 11832  df-sin 11834  df-cos 11835  df-pi 11837  df-tau 11960  df-rest 12945  df-topgen 12964  df-psmet 14177  df-xmet 14178  df-met 14179  df-bl 14180  df-mopn 14181  df-top 14342  df-topon 14355  df-bases 14387  df-ntr 14440  df-cn 14532  df-cnp 14533  df-tx 14597  df-cncf 14915  df-limced 15000  df-dvap 15001
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator