| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > taupi | GIF version | ||
| Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
| Ref | Expression |
|---|---|
| taupi | ⊢ τ = (2 · π) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tau 12295 | . 2 ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | |
| 2 | lttri3 8234 | . . . . 5 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
| 3 | 2 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
| 4 | 2re 9188 | . . . . . 6 ⊢ 2 ∈ ℝ | |
| 5 | pire 15468 | . . . . . 6 ⊢ π ∈ ℝ | |
| 6 | 4, 5 | remulcli 8168 | . . . . 5 ⊢ (2 · π) ∈ ℝ |
| 7 | 6 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ ℝ) |
| 8 | 2rp 9862 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
| 9 | pirp 15471 | . . . . . . 7 ⊢ π ∈ ℝ+ | |
| 10 | rpmulcl 9882 | . . . . . . 7 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
| 11 | 8, 9, 10 | mp2an 426 | . . . . . 6 ⊢ (2 · π) ∈ ℝ+ |
| 12 | 6 | recni 8166 | . . . . . . 7 ⊢ (2 · π) ∈ ℂ |
| 13 | cos2pi 15486 | . . . . . . 7 ⊢ (cos‘(2 · π)) = 1 | |
| 14 | cosf 12224 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
| 15 | ffn 5473 | . . . . . . . . 9 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ cos Fn ℂ |
| 17 | fniniseg 5757 | . . . . . . . 8 ⊢ (cos Fn ℂ → ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1))) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1)) |
| 19 | 12, 13, 18 | mpbir2an 948 | . . . . . 6 ⊢ (2 · π) ∈ (◡cos “ {1}) |
| 20 | 11, 19 | elini 3388 | . . . . 5 ⊢ (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1})) |
| 21 | 20 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1}))) |
| 22 | elinel2 3391 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ (◡cos “ {1})) | |
| 23 | fniniseg 5757 | . . . . . . . . . . 11 ⊢ (cos Fn ℂ → (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))) | |
| 24 | 16, 23 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
| 25 | 22, 24 | sylib 122 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
| 26 | 25 | simprd 114 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (cos‘𝑥) = 1) |
| 27 | 26 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) = 1) |
| 28 | elinel1 3390 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ+) | |
| 29 | 28 | rpred 9900 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ) |
| 30 | 29 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ ℝ) |
| 31 | 28 | rpgt0d 9903 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 0 < 𝑥) |
| 32 | 31 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 0 < 𝑥) |
| 33 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 < (2 · π)) | |
| 34 | 0xr 8201 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ* | |
| 35 | 6 | rexri 8212 | . . . . . . . . . 10 ⊢ (2 · π) ∈ ℝ* |
| 36 | elioo2 10125 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π)))) | |
| 37 | 34, 35, 36 | mp2an 426 | . . . . . . . . 9 ⊢ (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π))) |
| 38 | 30, 32, 33, 37 | syl3anbrc 1205 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ (0(,)(2 · π))) |
| 39 | cos02pilt1 15533 | . . . . . . . 8 ⊢ (𝑥 ∈ (0(,)(2 · π)) → (cos‘𝑥) < 1) | |
| 40 | 38, 39 | syl 14 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) < 1) |
| 41 | 27, 40 | eqbrtrrd 4107 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 < 1) |
| 42 | 1red 8169 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 ∈ ℝ) | |
| 43 | 42 | ltnrd 8266 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → ¬ 1 < 1) |
| 44 | 41, 43 | pm2.65da 665 | . . . . 5 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → ¬ 𝑥 < (2 · π)) |
| 45 | 44 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ+ ∩ (◡cos “ {1}))) → ¬ 𝑥 < (2 · π)) |
| 46 | 3, 7, 21, 45 | infminti 7202 | . . 3 ⊢ (⊤ → inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π)) |
| 47 | 46 | mptru 1404 | . 2 ⊢ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π) |
| 48 | 1, 47 | eqtri 2250 | 1 ⊢ τ = (2 · π) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ∩ cin 3196 {csn 3666 class class class wbr 4083 ◡ccnv 4718 “ cima 4722 Fn wfn 5313 ⟶wf 5314 ‘cfv 5318 (class class class)co 6007 infcinf 7158 ℂcc 8005 ℝcr 8006 0cc0 8007 1c1 8008 · cmul 8012 ℝ*cxr 8188 < clt 8189 2c2 9169 ℝ+crp 9857 (,)cioo 10092 cosccos 12164 πcpi 12166 τctau 12294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 ax-pre-suploc 8128 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-disj 4060 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-of 6224 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-frec 6543 df-1o 6568 df-oadd 6572 df-er 6688 df-map 6805 df-pm 6806 df-en 6896 df-dom 6897 df-fin 6898 df-sup 7159 df-inf 7160 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-xneg 9976 df-xadd 9977 df-ioo 10096 df-ioc 10097 df-ico 10098 df-icc 10099 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-exp 10769 df-fac 10956 df-bc 10978 df-ihash 11006 df-shft 11334 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-clim 11798 df-sumdc 11873 df-ef 12167 df-sin 12169 df-cos 12170 df-pi 12172 df-tau 12295 df-rest 13282 df-topgen 13301 df-psmet 14515 df-xmet 14516 df-met 14517 df-bl 14518 df-mopn 14519 df-top 14680 df-topon 14693 df-bases 14725 df-ntr 14778 df-cn 14870 df-cnp 14871 df-tx 14935 df-cncf 15253 df-limced 15338 df-dvap 15339 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |