![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > taupi | GIF version |
Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.) |
Ref | Expression |
---|---|
taupi | ⊢ τ = (2 · π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tau 11810 | . 2 ⊢ τ = inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) | |
2 | lttri3 8062 | . . . . 5 ⊢ ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) | |
3 | 2 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓))) |
4 | 2re 9014 | . . . . . 6 ⊢ 2 ∈ ℝ | |
5 | pire 14644 | . . . . . 6 ⊢ π ∈ ℝ | |
6 | 4, 5 | remulcli 7996 | . . . . 5 ⊢ (2 · π) ∈ ℝ |
7 | 6 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ ℝ) |
8 | 2rp 9683 | . . . . . . 7 ⊢ 2 ∈ ℝ+ | |
9 | pirp 14647 | . . . . . . 7 ⊢ π ∈ ℝ+ | |
10 | rpmulcl 9703 | . . . . . . 7 ⊢ ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+) | |
11 | 8, 9, 10 | mp2an 426 | . . . . . 6 ⊢ (2 · π) ∈ ℝ+ |
12 | 6 | recni 7994 | . . . . . . 7 ⊢ (2 · π) ∈ ℂ |
13 | cos2pi 14662 | . . . . . . 7 ⊢ (cos‘(2 · π)) = 1 | |
14 | cosf 11740 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
15 | ffn 5381 | . . . . . . . . 9 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ cos Fn ℂ |
17 | fniniseg 5653 | . . . . . . . 8 ⊢ (cos Fn ℂ → ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1))) | |
18 | 16, 17 | ax-mp 5 | . . . . . . 7 ⊢ ((2 · π) ∈ (◡cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1)) |
19 | 12, 13, 18 | mpbir2an 944 | . . . . . 6 ⊢ (2 · π) ∈ (◡cos “ {1}) |
20 | 11, 19 | elini 3334 | . . . . 5 ⊢ (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1})) |
21 | 20 | a1i 9 | . . . 4 ⊢ (⊤ → (2 · π) ∈ (ℝ+ ∩ (◡cos “ {1}))) |
22 | elinel2 3337 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ (◡cos “ {1})) | |
23 | fniniseg 5653 | . . . . . . . . . . 11 ⊢ (cos Fn ℂ → (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))) | |
24 | 16, 23 | ax-mp 5 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (◡cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
25 | 22, 24 | sylib 122 | . . . . . . . . 9 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)) |
26 | 25 | simprd 114 | . . . . . . . 8 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → (cos‘𝑥) = 1) |
27 | 26 | adantr 276 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) = 1) |
28 | elinel1 3336 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ+) | |
29 | 28 | rpred 9721 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 𝑥 ∈ ℝ) |
30 | 29 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ ℝ) |
31 | 28 | rpgt0d 9724 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → 0 < 𝑥) |
32 | 31 | adantr 276 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 0 < 𝑥) |
33 | simpr 110 | . . . . . . . . 9 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 < (2 · π)) | |
34 | 0xr 8029 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ* | |
35 | 6 | rexri 8040 | . . . . . . . . . 10 ⊢ (2 · π) ∈ ℝ* |
36 | elioo2 9946 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π)))) | |
37 | 34, 35, 36 | mp2an 426 | . . . . . . . . 9 ⊢ (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < (2 · π))) |
38 | 30, 32, 33, 37 | syl3anbrc 1183 | . . . . . . . 8 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ (0(,)(2 · π))) |
39 | cos02pilt1 14709 | . . . . . . . 8 ⊢ (𝑥 ∈ (0(,)(2 · π)) → (cos‘𝑥) < 1) | |
40 | 38, 39 | syl 14 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) < 1) |
41 | 27, 40 | eqbrtrrd 4042 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 < 1) |
42 | 1red 7997 | . . . . . . 7 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 ∈ ℝ) | |
43 | 42 | ltnrd 8094 | . . . . . 6 ⊢ ((𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) ∧ 𝑥 < (2 · π)) → ¬ 1 < 1) |
44 | 41, 43 | pm2.65da 662 | . . . . 5 ⊢ (𝑥 ∈ (ℝ+ ∩ (◡cos “ {1})) → ¬ 𝑥 < (2 · π)) |
45 | 44 | adantl 277 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ+ ∩ (◡cos “ {1}))) → ¬ 𝑥 < (2 · π)) |
46 | 3, 7, 21, 45 | infminti 7051 | . . 3 ⊢ (⊤ → inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π)) |
47 | 46 | mptru 1373 | . 2 ⊢ inf((ℝ+ ∩ (◡cos “ {1})), ℝ, < ) = (2 · π) |
48 | 1, 47 | eqtri 2210 | 1 ⊢ τ = (2 · π) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ⊤wtru 1365 ∈ wcel 2160 ∩ cin 3143 {csn 3607 class class class wbr 4018 ◡ccnv 4640 “ cima 4644 Fn wfn 5227 ⟶wf 5228 ‘cfv 5232 (class class class)co 5892 infcinf 7007 ℂcc 7834 ℝcr 7835 0cc0 7836 1c1 7837 · cmul 7841 ℝ*cxr 8016 < clt 8017 2c2 8995 ℝ+crp 9678 (,)cioo 9913 cosccos 11680 πcpi 11682 τctau 11809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-mulrcl 7935 ax-addcom 7936 ax-mulcom 7937 ax-addass 7938 ax-mulass 7939 ax-distr 7940 ax-i2m1 7941 ax-0lt1 7942 ax-1rid 7943 ax-0id 7944 ax-rnegex 7945 ax-precex 7946 ax-cnre 7947 ax-pre-ltirr 7948 ax-pre-ltwlin 7949 ax-pre-lttrn 7950 ax-pre-apti 7951 ax-pre-ltadd 7952 ax-pre-mulgt0 7953 ax-pre-mulext 7954 ax-arch 7955 ax-caucvg 7956 ax-pre-suploc 7957 ax-addf 7958 ax-mulf 7959 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-disj 3996 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-isom 5241 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-of 6102 df-1st 6160 df-2nd 6161 df-recs 6325 df-irdg 6390 df-frec 6411 df-1o 6436 df-oadd 6440 df-er 6554 df-map 6671 df-pm 6672 df-en 6762 df-dom 6763 df-fin 6764 df-sup 7008 df-inf 7009 df-pnf 8019 df-mnf 8020 df-xr 8021 df-ltxr 8022 df-le 8023 df-sub 8155 df-neg 8156 df-reap 8557 df-ap 8564 df-div 8655 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-5 9006 df-6 9007 df-7 9008 df-8 9009 df-9 9010 df-n0 9202 df-z 9279 df-uz 9554 df-q 9645 df-rp 9679 df-xneg 9797 df-xadd 9798 df-ioo 9917 df-ioc 9918 df-ico 9919 df-icc 9920 df-fz 10034 df-fzo 10168 df-seqfrec 10472 df-exp 10546 df-fac 10733 df-bc 10755 df-ihash 10783 df-shft 10851 df-cj 10878 df-re 10879 df-im 10880 df-rsqrt 11034 df-abs 11035 df-clim 11314 df-sumdc 11389 df-ef 11683 df-sin 11685 df-cos 11686 df-pi 11688 df-tau 11810 df-rest 12739 df-topgen 12758 df-psmet 13849 df-xmet 13850 df-met 13851 df-bl 13852 df-mopn 13853 df-top 13935 df-topon 13948 df-bases 13980 df-ntr 14033 df-cn 14125 df-cnp 14126 df-tx 14190 df-cncf 14495 df-limced 14562 df-dvap 14563 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |