Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  taupi GIF version

Theorem taupi 16372
Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi τ = (2 · π)

Proof of Theorem taupi
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tau 12273 . 2 τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
2 lttri3 8214 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
32adantl 277 . . . 4 ((⊤ ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4 2re 9168 . . . . . 6 2 ∈ ℝ
5 pire 15445 . . . . . 6 π ∈ ℝ
64, 5remulcli 8148 . . . . 5 (2 · π) ∈ ℝ
76a1i 9 . . . 4 (⊤ → (2 · π) ∈ ℝ)
8 2rp 9842 . . . . . . 7 2 ∈ ℝ+
9 pirp 15448 . . . . . . 7 π ∈ ℝ+
10 rpmulcl 9862 . . . . . . 7 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
118, 9, 10mp2an 426 . . . . . 6 (2 · π) ∈ ℝ+
126recni 8146 . . . . . . 7 (2 · π) ∈ ℂ
13 cos2pi 15463 . . . . . . 7 (cos‘(2 · π)) = 1
14 cosf 12202 . . . . . . . . 9 cos:ℂ⟶ℂ
15 ffn 5469 . . . . . . . . 9 (cos:ℂ⟶ℂ → cos Fn ℂ)
1614, 15ax-mp 5 . . . . . . . 8 cos Fn ℂ
17 fniniseg 5748 . . . . . . . 8 (cos Fn ℂ → ((2 · π) ∈ (cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1)))
1816, 17ax-mp 5 . . . . . . 7 ((2 · π) ∈ (cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1))
1912, 13, 18mpbir2an 948 . . . . . 6 (2 · π) ∈ (cos “ {1})
2011, 19elini 3388 . . . . 5 (2 · π) ∈ (ℝ+ ∩ (cos “ {1}))
2120a1i 9 . . . 4 (⊤ → (2 · π) ∈ (ℝ+ ∩ (cos “ {1})))
22 elinel2 3391 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ (cos “ {1}))
23 fniniseg 5748 . . . . . . . . . . 11 (cos Fn ℂ → (𝑥 ∈ (cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)))
2416, 23ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))
2522, 24sylib 122 . . . . . . . . 9 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))
2625simprd 114 . . . . . . . 8 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (cos‘𝑥) = 1)
2726adantr 276 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) = 1)
28 elinel1 3390 . . . . . . . . . . 11 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ ℝ+)
2928rpred 9880 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ ℝ)
3029adantr 276 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ ℝ)
3128rpgt0d 9883 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 0 < 𝑥)
3231adantr 276 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 0 < 𝑥)
33 simpr 110 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 < (2 · π))
34 0xr 8181 . . . . . . . . . 10 0 ∈ ℝ*
356rexri 8192 . . . . . . . . . 10 (2 · π) ∈ ℝ*
36 elioo2 10105 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < (2 · π))))
3734, 35, 36mp2an 426 . . . . . . . . 9 (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < (2 · π)))
3830, 32, 33, 37syl3anbrc 1205 . . . . . . . 8 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ (0(,)(2 · π)))
39 cos02pilt1 15510 . . . . . . . 8 (𝑥 ∈ (0(,)(2 · π)) → (cos‘𝑥) < 1)
4038, 39syl 14 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) < 1)
4127, 40eqbrtrrd 4106 . . . . . 6 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 < 1)
42 1red 8149 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 ∈ ℝ)
4342ltnrd 8246 . . . . . 6 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → ¬ 1 < 1)
4441, 43pm2.65da 665 . . . . 5 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → ¬ 𝑥 < (2 · π))
4544adantl 277 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ+ ∩ (cos “ {1}))) → ¬ 𝑥 < (2 · π))
463, 7, 21, 45infminti 7182 . . 3 (⊤ → inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) = (2 · π))
4746mptru 1404 . 2 inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) = (2 · π)
481, 47eqtri 2250 1 τ = (2 · π)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105  w3a 1002   = wceq 1395  wtru 1396  wcel 2200  cin 3196  {csn 3666   class class class wbr 4082  ccnv 4715  cima 4719   Fn wfn 5309  wf 5310  cfv 5314  (class class class)co 5994  infcinf 7138  cc 7985  cr 7986  0cc0 7987  1c1 7988   · cmul 7992  *cxr 8168   < clt 8169  2c2 9149  +crp 9837  (,)cioo 10072  cosccos 12142  πcpi 12144  τctau 12272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107  ax-pre-suploc 8108  ax-addf 8109  ax-mulf 8110
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-map 6787  df-pm 6788  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-xneg 9956  df-xadd 9957  df-ioo 10076  df-ioc 10077  df-ico 10078  df-icc 10079  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-fac 10935  df-bc 10957  df-ihash 10985  df-shft 11312  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851  df-ef 12145  df-sin 12147  df-cos 12148  df-pi 12150  df-tau 12273  df-rest 13260  df-topgen 13279  df-psmet 14492  df-xmet 14493  df-met 14494  df-bl 14495  df-mopn 14496  df-top 14657  df-topon 14670  df-bases 14702  df-ntr 14755  df-cn 14847  df-cnp 14848  df-tx 14912  df-cncf 15230  df-limced 15315  df-dvap 15316
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator