Mathbox for Jim Kingdon < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  taupi GIF version

Theorem taupi 13272
 Description: Relationship between τ and π. This can be seen as connecting the ratio of a circle's circumference to its radius and the ratio of a circle's circumference to its diameter. (Contributed by Jim Kingdon, 19-Feb-2019.) (Revised by AV, 1-Oct-2020.)
Assertion
Ref Expression
taupi τ = (2 · π)

Proof of Theorem taupi
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tau 11489 . 2 τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
2 lttri3 7851 . . . . 5 ((𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
32adantl 275 . . . 4 ((⊤ ∧ (𝑓 ∈ ℝ ∧ 𝑔 ∈ ℝ)) → (𝑓 = 𝑔 ↔ (¬ 𝑓 < 𝑔 ∧ ¬ 𝑔 < 𝑓)))
4 2re 8797 . . . . . 6 2 ∈ ℝ
5 pire 12880 . . . . . 6 π ∈ ℝ
64, 5remulcli 7787 . . . . 5 (2 · π) ∈ ℝ
76a1i 9 . . . 4 (⊤ → (2 · π) ∈ ℝ)
8 2rp 9453 . . . . . . 7 2 ∈ ℝ+
9 pirp 12883 . . . . . . 7 π ∈ ℝ+
10 rpmulcl 9473 . . . . . . 7 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
118, 9, 10mp2an 422 . . . . . 6 (2 · π) ∈ ℝ+
126recni 7785 . . . . . . 7 (2 · π) ∈ ℂ
13 cos2pi 12898 . . . . . . 7 (cos‘(2 · π)) = 1
14 cosf 11419 . . . . . . . . 9 cos:ℂ⟶ℂ
15 ffn 5272 . . . . . . . . 9 (cos:ℂ⟶ℂ → cos Fn ℂ)
1614, 15ax-mp 5 . . . . . . . 8 cos Fn ℂ
17 fniniseg 5540 . . . . . . . 8 (cos Fn ℂ → ((2 · π) ∈ (cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1)))
1816, 17ax-mp 5 . . . . . . 7 ((2 · π) ∈ (cos “ {1}) ↔ ((2 · π) ∈ ℂ ∧ (cos‘(2 · π)) = 1))
1912, 13, 18mpbir2an 926 . . . . . 6 (2 · π) ∈ (cos “ {1})
2011, 19elini 3260 . . . . 5 (2 · π) ∈ (ℝ+ ∩ (cos “ {1}))
2120a1i 9 . . . 4 (⊤ → (2 · π) ∈ (ℝ+ ∩ (cos “ {1})))
22 elinel2 3263 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ (cos “ {1}))
23 fniniseg 5540 . . . . . . . . . . 11 (cos Fn ℂ → (𝑥 ∈ (cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1)))
2416, 23ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (cos “ {1}) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))
2522, 24sylib 121 . . . . . . . . 9 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (𝑥 ∈ ℂ ∧ (cos‘𝑥) = 1))
2625simprd 113 . . . . . . . 8 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → (cos‘𝑥) = 1)
2726adantr 274 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) = 1)
28 elinel1 3262 . . . . . . . . . . 11 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ ℝ+)
2928rpred 9490 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 𝑥 ∈ ℝ)
3029adantr 274 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ ℝ)
3128rpgt0d 9493 . . . . . . . . . 10 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → 0 < 𝑥)
3231adantr 274 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 0 < 𝑥)
33 simpr 109 . . . . . . . . 9 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 < (2 · π))
34 0xr 7819 . . . . . . . . . 10 0 ∈ ℝ*
356rexri 7830 . . . . . . . . . 10 (2 · π) ∈ ℝ*
36 elioo2 9711 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (2 · π) ∈ ℝ*) → (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < (2 · π))))
3734, 35, 36mp2an 422 . . . . . . . . 9 (𝑥 ∈ (0(,)(2 · π)) ↔ (𝑥 ∈ ℝ ∧ 0 < 𝑥𝑥 < (2 · π)))
3830, 32, 33, 37syl3anbrc 1165 . . . . . . . 8 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 𝑥 ∈ (0(,)(2 · π)))
39 cos02pilt1 12945 . . . . . . . 8 (𝑥 ∈ (0(,)(2 · π)) → (cos‘𝑥) < 1)
4038, 39syl 14 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → (cos‘𝑥) < 1)
4127, 40eqbrtrrd 3952 . . . . . 6 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 < 1)
42 1red 7788 . . . . . . 7 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → 1 ∈ ℝ)
4342ltnrd 7882 . . . . . 6 ((𝑥 ∈ (ℝ+ ∩ (cos “ {1})) ∧ 𝑥 < (2 · π)) → ¬ 1 < 1)
4441, 43pm2.65da 650 . . . . 5 (𝑥 ∈ (ℝ+ ∩ (cos “ {1})) → ¬ 𝑥 < (2 · π))
4544adantl 275 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ+ ∩ (cos “ {1}))) → ¬ 𝑥 < (2 · π))
463, 7, 21, 45infminti 6914 . . 3 (⊤ → inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) = (2 · π))
4746mptru 1340 . 2 inf((ℝ+ ∩ (cos “ {1})), ℝ, < ) = (2 · π)
481, 47eqtri 2160 1 τ = (2 · π)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ∧ wa 103   ↔ wb 104   ∧ w3a 962   = wceq 1331  ⊤wtru 1332   ∈ wcel 1480   ∩ cin 3070  {csn 3527   class class class wbr 3929  ◡ccnv 4538   “ cima 4542   Fn wfn 5118  ⟶wf 5119  ‘cfv 5123  (class class class)co 5774  infcinf 6870  ℂcc 7625  ℝcr 7626  0cc0 7627  1c1 7628   · cmul 7632  ℝ*cxr 7806   < clt 7807  2c2 8778  ℝ+crp 9448  (,)cioo 9678  cosccos 11358  πcpi 11360  τctau 11488 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747  ax-pre-suploc 7748  ax-addf 7749  ax-mulf 7750 This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-xneg 9566  df-xadd 9567  df-ioo 9682  df-ioc 9683  df-ico 9684  df-icc 9685  df-fz 9798  df-fzo 9927  df-seqfrec 10226  df-exp 10300  df-fac 10479  df-bc 10501  df-ihash 10529  df-shft 10594  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-clim 11055  df-sumdc 11130  df-ef 11361  df-sin 11363  df-cos 11364  df-pi 11366  df-tau 11489  df-rest 12132  df-topgen 12151  df-psmet 12166  df-xmet 12167  df-met 12168  df-bl 12169  df-mopn 12170  df-top 12175  df-topon 12188  df-bases 12220  df-ntr 12275  df-cn 12367  df-cnp 12368  df-tx 12432  df-cncf 12737  df-limced 12804  df-dvap 12805 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator