![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elind | GIF version |
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
elind.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
elind.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
elind | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elind.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
2 | elind.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | elin 3342 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∩ cin 3152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 |
This theorem is referenced by: elfir 7032 infpwfidom 7258 nninfdclemcl 12605 nninfdclemp1 12607 strslfv2d 12661 insubm 13057 2idl0 14008 2idl1 14009 baspartn 14218 bastg 14229 isopn3 14293 restbasg 14336 lmss 14414 metrest 14674 tgioo 14714 dvmulxxbr 14851 elply2 14881 pilem3 14918 2sqlem7 15208 |
Copyright terms: Public domain | W3C validator |