| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elind | GIF version | ||
| Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| elind.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| elind.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elind | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | elind.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | elin 3360 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∩ cin 3169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 |
| This theorem is referenced by: elfir 7090 infpwfidom 7322 nninfdclemcl 12894 nninfdclemp1 12896 strslfv2d 12950 insubm 13392 2idl0 14349 2idl1 14350 baspartn 14597 bastg 14608 isopn3 14672 restbasg 14715 lmss 14793 metrest 15053 tgioo 15101 dvmulxxbr 15249 elply2 15282 pilem3 15330 2sqlem7 15673 |
| Copyright terms: Public domain | W3C validator |