| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elind | GIF version | ||
| Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| elind.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| elind.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elind | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | elind.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | elin 3347 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∩ cin 3156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 |
| This theorem is referenced by: elfir 7048 infpwfidom 7279 nninfdclemcl 12692 nninfdclemp1 12694 strslfv2d 12748 insubm 13189 2idl0 14146 2idl1 14147 baspartn 14394 bastg 14405 isopn3 14469 restbasg 14512 lmss 14590 metrest 14850 tgioo 14898 dvmulxxbr 15046 elply2 15079 pilem3 15127 2sqlem7 15470 |
| Copyright terms: Public domain | W3C validator |