ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elind GIF version

Theorem elind 3306
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
elind.1 (𝜑𝑋𝐴)
elind.2 (𝜑𝑋𝐵)
Assertion
Ref Expression
elind (𝜑𝑋 ∈ (𝐴𝐵))

Proof of Theorem elind
StepHypRef Expression
1 elind.1 . 2 (𝜑𝑋𝐴)
2 elind.2 . 2 (𝜑𝑋𝐵)
3 elin 3304 . 2 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋𝐴𝑋𝐵))
41, 2, 3sylanbrc 414 1 (𝜑𝑋 ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2136  cin 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-in 3121
This theorem is referenced by:  elfir  6934  infpwfidom  7150  nninfdclemcl  12377  nninfdclemp1  12379  strslfv2d  12432  baspartn  12648  bastg  12661  isopn3  12725  restbasg  12768  lmss  12846  metrest  13106  tgioo  13146  dvmulxxbr  13266  pilem3  13304  2sqlem7  13557
  Copyright terms: Public domain W3C validator