ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elind GIF version

Theorem elind 3389
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
elind.1 (𝜑𝑋𝐴)
elind.2 (𝜑𝑋𝐵)
Assertion
Ref Expression
elind (𝜑𝑋 ∈ (𝐴𝐵))

Proof of Theorem elind
StepHypRef Expression
1 elind.1 . 2 (𝜑𝑋𝐴)
2 elind.2 . 2 (𝜑𝑋𝐵)
3 elin 3387 . 2 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋𝐴𝑋𝐵))
41, 2, 3sylanbrc 417 1 (𝜑𝑋 ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  cin 3196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203
This theorem is referenced by:  elfir  7136  infpwfidom  7372  nninfdclemcl  13014  nninfdclemp1  13016  strslfv2d  13070  bassetsnn  13084  insubm  13513  2idl0  14470  2idl1  14471  baspartn  14718  bastg  14729  isopn3  14793  restbasg  14836  lmss  14914  metrest  15174  tgioo  15222  dvmulxxbr  15370  elply2  15403  pilem3  15451  2sqlem7  15794
  Copyright terms: Public domain W3C validator