Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elind GIF version

Theorem elind 3292
 Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
elind.1 (𝜑𝑋𝐴)
elind.2 (𝜑𝑋𝐵)
Assertion
Ref Expression
elind (𝜑𝑋 ∈ (𝐴𝐵))

Proof of Theorem elind
StepHypRef Expression
1 elind.1 . 2 (𝜑𝑋𝐴)
2 elind.2 . 2 (𝜑𝑋𝐵)
3 elin 3290 . 2 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋𝐴𝑋𝐵))
41, 2, 3sylanbrc 414 1 (𝜑𝑋 ∈ (𝐴𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 2128   ∩ cin 3101 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108 This theorem is referenced by:  elfir  6910  infpwfidom  7116  strslfv2d  12192  baspartn  12408  bastg  12421  isopn3  12485  restbasg  12528  lmss  12606  metrest  12866  tgioo  12906  dvmulxxbr  13026  pilem3  13064
 Copyright terms: Public domain W3C validator