![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elind | GIF version |
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
elind.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
elind.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
elind | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elind.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
2 | elind.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | elin 3225 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
4 | 1, 2, 3 | sylanbrc 411 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1463 ∩ cin 3036 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-in 3043 |
This theorem is referenced by: elfir 6813 infpwfidom 7002 strslfv2d 11844 baspartn 12060 bastg 12073 isopn3 12137 restbasg 12180 lmss 12257 metrest 12495 tgioo 12532 dvmulxxbr 12621 |
Copyright terms: Public domain | W3C validator |