Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elind | GIF version |
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
elind.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
elind.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
elind | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elind.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
2 | elind.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | elin 3304 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
4 | 1, 2, 3 | sylanbrc 414 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ∩ cin 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-in 3121 |
This theorem is referenced by: elfir 6934 infpwfidom 7150 nninfdclemcl 12377 nninfdclemp1 12379 strslfv2d 12432 baspartn 12648 bastg 12661 isopn3 12725 restbasg 12768 lmss 12846 metrest 13106 tgioo 13146 dvmulxxbr 13266 pilem3 13304 2sqlem7 13557 |
Copyright terms: Public domain | W3C validator |