| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elind | GIF version | ||
| Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| elind.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| elind.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elind | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | elind.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | elin 3355 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ∩ cin 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 |
| This theorem is referenced by: elfir 7057 infpwfidom 7288 nninfdclemcl 12738 nninfdclemp1 12740 strslfv2d 12794 insubm 13235 2idl0 14192 2idl1 14193 baspartn 14440 bastg 14451 isopn3 14515 restbasg 14558 lmss 14636 metrest 14896 tgioo 14944 dvmulxxbr 15092 elply2 15125 pilem3 15173 2sqlem7 15516 |
| Copyright terms: Public domain | W3C validator |