ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elind GIF version

Theorem elind 3227
Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
elind.1 (𝜑𝑋𝐴)
elind.2 (𝜑𝑋𝐵)
Assertion
Ref Expression
elind (𝜑𝑋 ∈ (𝐴𝐵))

Proof of Theorem elind
StepHypRef Expression
1 elind.1 . 2 (𝜑𝑋𝐴)
2 elind.2 . 2 (𝜑𝑋𝐵)
3 elin 3225 . 2 (𝑋 ∈ (𝐴𝐵) ↔ (𝑋𝐴𝑋𝐵))
41, 2, 3sylanbrc 411 1 (𝜑𝑋 ∈ (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1463  cin 3036
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-in 3043
This theorem is referenced by:  elfir  6813  infpwfidom  7002  strslfv2d  11844  baspartn  12060  bastg  12073  isopn3  12137  restbasg  12180  lmss  12257  metrest  12495  tgioo  12532  dvmulxxbr  12621
  Copyright terms: Public domain W3C validator