| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elind | GIF version | ||
| Description: Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| elind.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| elind.2 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| elind | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elind.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | elind.2 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | elin 3387 | . 2 ⊢ (𝑋 ∈ (𝐴 ∩ 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ∩ cin 3196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 |
| This theorem is referenced by: elfir 7136 infpwfidom 7372 nninfdclemcl 13014 nninfdclemp1 13016 strslfv2d 13070 bassetsnn 13084 insubm 13513 2idl0 14470 2idl1 14471 baspartn 14718 bastg 14729 isopn3 14793 restbasg 14836 lmss 14914 metrest 15174 tgioo 15222 dvmulxxbr 15370 elply2 15403 pilem3 15451 2sqlem7 15794 |
| Copyright terms: Public domain | W3C validator |