| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qsss | GIF version | ||
| Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
| Ref | Expression |
|---|---|
| qsss | ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elqs 6731 | . . 3 ⊢ (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅) |
| 3 | qsss.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
| 4 | 3 | ecss 6721 | . . . . . 6 ⊢ (𝜑 → [𝑦]𝑅 ⊆ 𝐴) |
| 5 | sseq1 3247 | . . . . . 6 ⊢ (𝑥 = [𝑦]𝑅 → (𝑥 ⊆ 𝐴 ↔ [𝑦]𝑅 ⊆ 𝐴)) | |
| 6 | 4, 5 | syl5ibrcom 157 | . . . . 5 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ⊆ 𝐴)) |
| 7 | velpw 3656 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 8 | 6, 7 | imbitrrdi 162 | . . . 4 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
| 9 | 8 | rexlimdvw 2652 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
| 10 | 2, 9 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 / 𝑅) → 𝑥 ∈ 𝒫 𝐴)) |
| 11 | 10 | ssrdv 3230 | 1 ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 ⊆ wss 3197 𝒫 cpw 3649 Er wer 6675 [cec 6676 / cqs 6677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-er 6678 df-ec 6680 df-qs 6684 |
| This theorem is referenced by: axcnex 8042 |
| Copyright terms: Public domain | W3C validator |