ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsss GIF version

Theorem qsss 6488
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qsss.1 (𝜑𝑅 Er 𝐴)
Assertion
Ref Expression
qsss (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴)

Proof of Theorem qsss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2689 . . . 4 𝑥 ∈ V
21elqs 6480 . . 3 (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑦𝐴 𝑥 = [𝑦]𝑅)
3 qsss.1 . . . . . . 7 (𝜑𝑅 Er 𝐴)
43ecss 6470 . . . . . 6 (𝜑 → [𝑦]𝑅𝐴)
5 sseq1 3120 . . . . . 6 (𝑥 = [𝑦]𝑅 → (𝑥𝐴 ↔ [𝑦]𝑅𝐴))
64, 5syl5ibrcom 156 . . . . 5 (𝜑 → (𝑥 = [𝑦]𝑅𝑥𝐴))
7 velpw 3517 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
86, 7syl6ibr 161 . . . 4 (𝜑 → (𝑥 = [𝑦]𝑅𝑥 ∈ 𝒫 𝐴))
98rexlimdvw 2553 . . 3 (𝜑 → (∃𝑦𝐴 𝑥 = [𝑦]𝑅𝑥 ∈ 𝒫 𝐴))
102, 9syl5bi 151 . 2 (𝜑 → (𝑥 ∈ (𝐴 / 𝑅) → 𝑥 ∈ 𝒫 𝐴))
1110ssrdv 3103 1 (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  wrex 2417  wss 3071  𝒫 cpw 3510   Er wer 6426  [cec 6427   / cqs 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-er 6429  df-ec 6431  df-qs 6435
This theorem is referenced by:  axcnex  7679
  Copyright terms: Public domain W3C validator