![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qsss | GIF version |
Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
Ref | Expression |
---|---|
qsss | ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | elqs 6588 | . . 3 ⊢ (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅) |
3 | qsss.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
4 | 3 | ecss 6578 | . . . . . 6 ⊢ (𝜑 → [𝑦]𝑅 ⊆ 𝐴) |
5 | sseq1 3180 | . . . . . 6 ⊢ (𝑥 = [𝑦]𝑅 → (𝑥 ⊆ 𝐴 ↔ [𝑦]𝑅 ⊆ 𝐴)) | |
6 | 4, 5 | syl5ibrcom 157 | . . . . 5 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ⊆ 𝐴)) |
7 | velpw 3584 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
8 | 6, 7 | imbitrrdi 162 | . . . 4 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
9 | 8 | rexlimdvw 2598 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
10 | 2, 9 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 / 𝑅) → 𝑥 ∈ 𝒫 𝐴)) |
11 | 10 | ssrdv 3163 | 1 ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 ∃wrex 2456 ⊆ wss 3131 𝒫 cpw 3577 Er wer 6534 [cec 6535 / cqs 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-er 6537 df-ec 6539 df-qs 6543 |
This theorem is referenced by: axcnex 7860 |
Copyright terms: Public domain | W3C validator |