| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qsss | GIF version | ||
| Description: A quotient set is a set of subsets of the base set. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| qsss.1 | ⊢ (𝜑 → 𝑅 Er 𝐴) |
| Ref | Expression |
|---|---|
| qsss | ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | elqs 6696 | . . 3 ⊢ (𝑥 ∈ (𝐴 / 𝑅) ↔ ∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅) |
| 3 | qsss.1 | . . . . . . 7 ⊢ (𝜑 → 𝑅 Er 𝐴) | |
| 4 | 3 | ecss 6686 | . . . . . 6 ⊢ (𝜑 → [𝑦]𝑅 ⊆ 𝐴) |
| 5 | sseq1 3224 | . . . . . 6 ⊢ (𝑥 = [𝑦]𝑅 → (𝑥 ⊆ 𝐴 ↔ [𝑦]𝑅 ⊆ 𝐴)) | |
| 6 | 4, 5 | syl5ibrcom 157 | . . . . 5 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ⊆ 𝐴)) |
| 7 | velpw 3633 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 8 | 6, 7 | imbitrrdi 162 | . . . 4 ⊢ (𝜑 → (𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
| 9 | 8 | rexlimdvw 2629 | . . 3 ⊢ (𝜑 → (∃𝑦 ∈ 𝐴 𝑥 = [𝑦]𝑅 → 𝑥 ∈ 𝒫 𝐴)) |
| 10 | 2, 9 | biimtrid 152 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝐴 / 𝑅) → 𝑥 ∈ 𝒫 𝐴)) |
| 11 | 10 | ssrdv 3207 | 1 ⊢ (𝜑 → (𝐴 / 𝑅) ⊆ 𝒫 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 ∃wrex 2487 ⊆ wss 3174 𝒫 cpw 3626 Er wer 6640 [cec 6641 / cqs 6642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-er 6643 df-ec 6645 df-qs 6649 |
| This theorem is referenced by: axcnex 8007 |
| Copyright terms: Public domain | W3C validator |