ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0 GIF version

Theorem nqnq0 7431
Description: A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
nqnq0 QQ0

Proof of Theorem nqnq0
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7338 . . . . 5 Q = ((N × N) / ~Q )
21eleq2i 2244 . . . 4 (𝑦Q𝑦 ∈ ((N × N) / ~Q ))
3 vex 2740 . . . . 5 𝑦 ∈ V
43elqs 6580 . . . 4 (𝑦 ∈ ((N × N) / ~Q ) ↔ ∃𝑥 ∈ (N × N)𝑦 = [𝑥] ~Q )
5 df-rex 2461 . . . 4 (∃𝑥 ∈ (N × N)𝑦 = [𝑥] ~Q ↔ ∃𝑥(𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ))
62, 4, 53bitri 206 . . 3 (𝑦Q ↔ ∃𝑥(𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ))
7 elxpi 4639 . . . . . . 7 (𝑥 ∈ (N × N) → ∃𝑢𝑣(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)))
8 nqnq0pi 7428 . . . . . . . . . . 11 ((𝑢N𝑣N) → [⟨𝑢, 𝑣⟩] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q )
98adantl 277 . . . . . . . . . 10 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [⟨𝑢, 𝑣⟩] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q )
10 eceq1 6564 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → [𝑥] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q0 )
11 eceq1 6564 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → [𝑥] ~Q = [⟨𝑢, 𝑣⟩] ~Q )
1210, 11eqeq12d 2192 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → ([𝑥] ~Q0 = [𝑥] ~Q ↔ [⟨𝑢, 𝑣⟩] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q ))
1312adantr 276 . . . . . . . . . 10 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → ([𝑥] ~Q0 = [𝑥] ~Q ↔ [⟨𝑢, 𝑣⟩] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q ))
149, 13mpbird 167 . . . . . . . . 9 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [𝑥] ~Q0 = [𝑥] ~Q )
15 pinn 7299 . . . . . . . . . . . . 13 (𝑢N𝑢 ∈ ω)
16 opelxpi 4655 . . . . . . . . . . . . 13 ((𝑢 ∈ ω ∧ 𝑣N) → ⟨𝑢, 𝑣⟩ ∈ (ω × N))
1715, 16sylan 283 . . . . . . . . . . . 12 ((𝑢N𝑣N) → ⟨𝑢, 𝑣⟩ ∈ (ω × N))
1817adantl 277 . . . . . . . . . . 11 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → ⟨𝑢, 𝑣⟩ ∈ (ω × N))
19 eleq1 2240 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝑥 ∈ (ω × N) ↔ ⟨𝑢, 𝑣⟩ ∈ (ω × N)))
2019adantr 276 . . . . . . . . . . 11 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → (𝑥 ∈ (ω × N) ↔ ⟨𝑢, 𝑣⟩ ∈ (ω × N)))
2118, 20mpbird 167 . . . . . . . . . 10 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → 𝑥 ∈ (ω × N))
22 enq0ex 7429 . . . . . . . . . . . 12 ~Q0 ∈ V
2322ecelqsi 6583 . . . . . . . . . . 11 (𝑥 ∈ (ω × N) → [𝑥] ~Q0 ∈ ((ω × N) / ~Q0 ))
24 df-nq0 7415 . . . . . . . . . . 11 Q0 = ((ω × N) / ~Q0 )
2523, 24eleqtrrdi 2271 . . . . . . . . . 10 (𝑥 ∈ (ω × N) → [𝑥] ~Q0Q0)
2621, 25syl 14 . . . . . . . . 9 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [𝑥] ~Q0Q0)
2714, 26eqeltrrd 2255 . . . . . . . 8 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [𝑥] ~QQ0)
2827exlimivv 1896 . . . . . . 7 (∃𝑢𝑣(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [𝑥] ~QQ0)
297, 28syl 14 . . . . . 6 (𝑥 ∈ (N × N) → [𝑥] ~QQ0)
3029adantr 276 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ) → [𝑥] ~QQ0)
31 eleq1 2240 . . . . . 6 (𝑦 = [𝑥] ~Q → (𝑦Q0 ↔ [𝑥] ~QQ0))
3231adantl 277 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ) → (𝑦Q0 ↔ [𝑥] ~QQ0))
3330, 32mpbird 167 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ) → 𝑦Q0)
3433exlimiv 1598 . . 3 (∃𝑥(𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ) → 𝑦Q0)
356, 34sylbi 121 . 2 (𝑦Q𝑦Q0)
3635ssriv 3159 1 QQ0
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wrex 2456  wss 3129  cop 3594  ωcom 4586   × cxp 4621  [cec 6527   / cqs 6528  Ncnpi 7262   ~Q ceq 7269  Qcnq 7270   ~Q0 ceq0 7276  Q0cnq0 7277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-mi 7296  df-enq 7337  df-nqqs 7338  df-enq0 7414  df-nq0 7415
This theorem is referenced by:  prarloclem5  7490  prarloclemcalc  7492
  Copyright terms: Public domain W3C validator