ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nqnq0 GIF version

Theorem nqnq0 7382
Description: A positive fraction is a nonnegative fraction. (Contributed by Jim Kingdon, 18-Nov-2019.)
Assertion
Ref Expression
nqnq0 QQ0

Proof of Theorem nqnq0
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 7289 . . . . 5 Q = ((N × N) / ~Q )
21eleq2i 2233 . . . 4 (𝑦Q𝑦 ∈ ((N × N) / ~Q ))
3 vex 2729 . . . . 5 𝑦 ∈ V
43elqs 6552 . . . 4 (𝑦 ∈ ((N × N) / ~Q ) ↔ ∃𝑥 ∈ (N × N)𝑦 = [𝑥] ~Q )
5 df-rex 2450 . . . 4 (∃𝑥 ∈ (N × N)𝑦 = [𝑥] ~Q ↔ ∃𝑥(𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ))
62, 4, 53bitri 205 . . 3 (𝑦Q ↔ ∃𝑥(𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ))
7 elxpi 4620 . . . . . . 7 (𝑥 ∈ (N × N) → ∃𝑢𝑣(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)))
8 nqnq0pi 7379 . . . . . . . . . . 11 ((𝑢N𝑣N) → [⟨𝑢, 𝑣⟩] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q )
98adantl 275 . . . . . . . . . 10 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [⟨𝑢, 𝑣⟩] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q )
10 eceq1 6536 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → [𝑥] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q0 )
11 eceq1 6536 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → [𝑥] ~Q = [⟨𝑢, 𝑣⟩] ~Q )
1210, 11eqeq12d 2180 . . . . . . . . . . 11 (𝑥 = ⟨𝑢, 𝑣⟩ → ([𝑥] ~Q0 = [𝑥] ~Q ↔ [⟨𝑢, 𝑣⟩] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q ))
1312adantr 274 . . . . . . . . . 10 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → ([𝑥] ~Q0 = [𝑥] ~Q ↔ [⟨𝑢, 𝑣⟩] ~Q0 = [⟨𝑢, 𝑣⟩] ~Q ))
149, 13mpbird 166 . . . . . . . . 9 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [𝑥] ~Q0 = [𝑥] ~Q )
15 pinn 7250 . . . . . . . . . . . . 13 (𝑢N𝑢 ∈ ω)
16 opelxpi 4636 . . . . . . . . . . . . 13 ((𝑢 ∈ ω ∧ 𝑣N) → ⟨𝑢, 𝑣⟩ ∈ (ω × N))
1715, 16sylan 281 . . . . . . . . . . . 12 ((𝑢N𝑣N) → ⟨𝑢, 𝑣⟩ ∈ (ω × N))
1817adantl 275 . . . . . . . . . . 11 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → ⟨𝑢, 𝑣⟩ ∈ (ω × N))
19 eleq1 2229 . . . . . . . . . . . 12 (𝑥 = ⟨𝑢, 𝑣⟩ → (𝑥 ∈ (ω × N) ↔ ⟨𝑢, 𝑣⟩ ∈ (ω × N)))
2019adantr 274 . . . . . . . . . . 11 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → (𝑥 ∈ (ω × N) ↔ ⟨𝑢, 𝑣⟩ ∈ (ω × N)))
2118, 20mpbird 166 . . . . . . . . . 10 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → 𝑥 ∈ (ω × N))
22 enq0ex 7380 . . . . . . . . . . . 12 ~Q0 ∈ V
2322ecelqsi 6555 . . . . . . . . . . 11 (𝑥 ∈ (ω × N) → [𝑥] ~Q0 ∈ ((ω × N) / ~Q0 ))
24 df-nq0 7366 . . . . . . . . . . 11 Q0 = ((ω × N) / ~Q0 )
2523, 24eleqtrrdi 2260 . . . . . . . . . 10 (𝑥 ∈ (ω × N) → [𝑥] ~Q0Q0)
2621, 25syl 14 . . . . . . . . 9 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [𝑥] ~Q0Q0)
2714, 26eqeltrrd 2244 . . . . . . . 8 ((𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [𝑥] ~QQ0)
2827exlimivv 1884 . . . . . . 7 (∃𝑢𝑣(𝑥 = ⟨𝑢, 𝑣⟩ ∧ (𝑢N𝑣N)) → [𝑥] ~QQ0)
297, 28syl 14 . . . . . 6 (𝑥 ∈ (N × N) → [𝑥] ~QQ0)
3029adantr 274 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ) → [𝑥] ~QQ0)
31 eleq1 2229 . . . . . 6 (𝑦 = [𝑥] ~Q → (𝑦Q0 ↔ [𝑥] ~QQ0))
3231adantl 275 . . . . 5 ((𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ) → (𝑦Q0 ↔ [𝑥] ~QQ0))
3330, 32mpbird 166 . . . 4 ((𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ) → 𝑦Q0)
3433exlimiv 1586 . . 3 (∃𝑥(𝑥 ∈ (N × N) ∧ 𝑦 = [𝑥] ~Q ) → 𝑦Q0)
356, 34sylbi 120 . 2 (𝑦Q𝑦Q0)
3635ssriv 3146 1 QQ0
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wrex 2445  wss 3116  cop 3579  ωcom 4567   × cxp 4602  [cec 6499   / cqs 6500  Ncnpi 7213   ~Q ceq 7220  Qcnq 7221   ~Q0 ceq0 7227  Q0cnq0 7228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-mi 7247  df-enq 7288  df-nqqs 7289  df-enq0 7365  df-nq0 7366
This theorem is referenced by:  prarloclem5  7441  prarloclemcalc  7443
  Copyright terms: Public domain W3C validator