ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr2 GIF version

Theorem eqtr2 2248
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eqtr2 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)

Proof of Theorem eqtr2
StepHypRef Expression
1 eqcom 2231 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
2 eqtr 2247 . 2 ((𝐵 = 𝐴𝐴 = 𝐶) → 𝐵 = 𝐶)
31, 2sylanb 284 1 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222
This theorem is referenced by:  eqvinc  2926  eqvincg  2927  moop2  4337  reusv3i  4549  relop  4871  f0rn0  5519  fliftfun  5919  th3qlem1  6782  enq0ref  7616  enq0tr  7617  genpdisj  7706  addlsub  8512  wrd2ind  11250  fsum2dlemstep  11940  0dvds  12317  cncongr1  12620  4sqlem12  12920  uhgr2edg  15998  usgredgreu  16008  uspgredg2vtxeu  16010
  Copyright terms: Public domain W3C validator