| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2 | GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2206 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | eqtr 2222 | . 2 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | |
| 3 | 1, 2 | sylanb 284 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eqvinc 2895 eqvincg 2896 moop2 4295 reusv3i 4505 relop 4827 f0rn0 5469 fliftfun 5864 th3qlem1 6723 enq0ref 7545 enq0tr 7546 genpdisj 7635 addlsub 8441 fsum2dlemstep 11687 0dvds 12064 cncongr1 12367 4sqlem12 12667 |
| Copyright terms: Public domain | W3C validator |