ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr2 GIF version

Theorem eqtr2 2223
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eqtr2 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)

Proof of Theorem eqtr2
StepHypRef Expression
1 eqcom 2206 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
2 eqtr 2222 . 2 ((𝐵 = 𝐴𝐴 = 𝐶) → 𝐵 = 𝐶)
31, 2sylanb 284 1 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197
This theorem is referenced by:  eqvinc  2895  eqvincg  2896  moop2  4295  reusv3i  4505  relop  4827  f0rn0  5469  fliftfun  5864  th3qlem1  6723  enq0ref  7545  enq0tr  7546  genpdisj  7635  addlsub  8441  fsum2dlemstep  11687  0dvds  12064  cncongr1  12367  4sqlem12  12667
  Copyright terms: Public domain W3C validator