![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2 | GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2091 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
2 | eqtr 2106 | . 2 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | |
3 | 1, 2 | sylanb 279 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1290 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-4 1446 ax-17 1465 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-cleq 2082 |
This theorem is referenced by: eqvinc 2743 eqvincg 2744 moop2 4089 reusv3i 4296 relop 4601 f0rn0 5220 fliftfun 5591 th3qlem1 6410 enq0ref 7055 enq0tr 7056 genpdisj 7145 addlsub 7911 fsum2dlemstep 10891 0dvds 11157 cncongr1 11426 |
Copyright terms: Public domain | W3C validator |