ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr2 GIF version

Theorem eqtr2 2107
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eqtr2 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)

Proof of Theorem eqtr2
StepHypRef Expression
1 eqcom 2091 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
2 eqtr 2106 . 2 ((𝐵 = 𝐴𝐴 = 𝐶) → 𝐵 = 𝐶)
31, 2sylanb 279 1 ((𝐴 = 𝐵𝐴 = 𝐶) → 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-4 1446  ax-17 1465  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-cleq 2082
This theorem is referenced by:  eqvinc  2743  eqvincg  2744  moop2  4089  reusv3i  4296  relop  4601  f0rn0  5220  fliftfun  5591  th3qlem1  6410  enq0ref  7055  enq0tr  7056  genpdisj  7145  addlsub  7911  fsum2dlemstep  10891  0dvds  11157  cncongr1  11426
  Copyright terms: Public domain W3C validator