| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2 | GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqtr2 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2208 | . 2 ⊢ (𝐴 = 𝐵 ↔ 𝐵 = 𝐴) | |
| 2 | eqtr 2224 | . 2 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) | |
| 3 | 1, 2 | sylanb 284 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐶) → 𝐵 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: eqvinc 2900 eqvincg 2901 moop2 4304 reusv3i 4514 relop 4836 f0rn0 5482 fliftfun 5878 th3qlem1 6737 enq0ref 7566 enq0tr 7567 genpdisj 7656 addlsub 8462 wrd2ind 11199 fsum2dlemstep 11820 0dvds 12197 cncongr1 12500 4sqlem12 12800 |
| Copyright terms: Public domain | W3C validator |