Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addlsub | GIF version |
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.) |
Ref | Expression |
---|---|
addlsub.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addlsub.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addlsub.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addlsub | ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5825 | . . 3 ⊢ ((𝐴 + 𝐵) = 𝐶 → ((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵)) | |
2 | addlsub.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | addlsub.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 2, 3 | pncand 8170 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
5 | eqtr2 2176 | . . . . . 6 ⊢ ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → (𝐶 − 𝐵) = 𝐴) | |
6 | 5 | eqcomd 2163 | . . . . 5 ⊢ ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶 − 𝐵)) |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶 − 𝐵))) |
8 | 4, 7 | mpan2d 425 | . . 3 ⊢ (𝜑 → (((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) → 𝐴 = (𝐶 − 𝐵))) |
9 | 1, 8 | syl5 32 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 → 𝐴 = (𝐶 − 𝐵))) |
10 | oveq1 5825 | . . 3 ⊢ (𝐴 = (𝐶 − 𝐵) → (𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵)) | |
11 | addlsub.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
12 | 11, 3 | npcand 8173 | . . . 4 ⊢ (𝜑 → ((𝐶 − 𝐵) + 𝐵) = 𝐶) |
13 | eqtr 2175 | . . . . 5 ⊢ (((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) ∧ ((𝐶 − 𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶) | |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝜑 → (((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) ∧ ((𝐶 − 𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶)) |
15 | 12, 14 | mpan2d 425 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) → (𝐴 + 𝐵) = 𝐶)) |
16 | 10, 15 | syl5 32 | . 2 ⊢ (𝜑 → (𝐴 = (𝐶 − 𝐵) → (𝐴 + 𝐵) = 𝐶)) |
17 | 9, 16 | impbid 128 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1335 ∈ wcel 2128 (class class class)co 5818 ℂcc 7713 + caddc 7718 − cmin 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 ax-resscn 7807 ax-1cn 7808 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-sub 8031 |
This theorem is referenced by: addrsub 8229 subexsub 8230 nn0ob 11780 oddennn 12093 |
Copyright terms: Public domain | W3C validator |