ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlsub GIF version

Theorem addlsub 8268
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.)
Hypotheses
Ref Expression
addlsub.a (𝜑𝐴 ∈ ℂ)
addlsub.b (𝜑𝐵 ∈ ℂ)
addlsub.c (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
addlsub (𝜑 → ((𝐴 + 𝐵) = 𝐶𝐴 = (𝐶𝐵)))

Proof of Theorem addlsub
StepHypRef Expression
1 oveq1 5849 . . 3 ((𝐴 + 𝐵) = 𝐶 → ((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵))
2 addlsub.a . . . . 5 (𝜑𝐴 ∈ ℂ)
3 addlsub.b . . . . 5 (𝜑𝐵 ∈ ℂ)
42, 3pncand 8210 . . . 4 (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴)
5 eqtr2 2184 . . . . . 6 ((((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → (𝐶𝐵) = 𝐴)
65eqcomd 2171 . . . . 5 ((((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶𝐵))
76a1i 9 . . . 4 (𝜑 → ((((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶𝐵)))
84, 7mpan2d 425 . . 3 (𝜑 → (((𝐴 + 𝐵) − 𝐵) = (𝐶𝐵) → 𝐴 = (𝐶𝐵)))
91, 8syl5 32 . 2 (𝜑 → ((𝐴 + 𝐵) = 𝐶𝐴 = (𝐶𝐵)))
10 oveq1 5849 . . 3 (𝐴 = (𝐶𝐵) → (𝐴 + 𝐵) = ((𝐶𝐵) + 𝐵))
11 addlsub.c . . . . 5 (𝜑𝐶 ∈ ℂ)
1211, 3npcand 8213 . . . 4 (𝜑 → ((𝐶𝐵) + 𝐵) = 𝐶)
13 eqtr 2183 . . . . 5 (((𝐴 + 𝐵) = ((𝐶𝐵) + 𝐵) ∧ ((𝐶𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶)
1413a1i 9 . . . 4 (𝜑 → (((𝐴 + 𝐵) = ((𝐶𝐵) + 𝐵) ∧ ((𝐶𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶))
1512, 14mpan2d 425 . . 3 (𝜑 → ((𝐴 + 𝐵) = ((𝐶𝐵) + 𝐵) → (𝐴 + 𝐵) = 𝐶))
1610, 15syl5 32 . 2 (𝜑 → (𝐴 = (𝐶𝐵) → (𝐴 + 𝐵) = 𝐶))
179, 16impbid 128 1 (𝜑 → ((𝐴 + 𝐵) = 𝐶𝐴 = (𝐶𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751   + caddc 7756  cmin 8069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071
This theorem is referenced by:  addrsub  8269  subexsub  8270  nn0ob  11845  oddennn  12325
  Copyright terms: Public domain W3C validator