![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlsub | GIF version |
Description: Left-subtraction: Subtraction of the left summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.) |
Ref | Expression |
---|---|
addlsub.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addlsub.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addlsub.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addlsub | ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5925 | . . 3 ⊢ ((𝐴 + 𝐵) = 𝐶 → ((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵)) | |
2 | addlsub.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | addlsub.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 2, 3 | pncand 8331 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
5 | eqtr2 2212 | . . . . . 6 ⊢ ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → (𝐶 − 𝐵) = 𝐴) | |
6 | 5 | eqcomd 2199 | . . . . 5 ⊢ ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶 − 𝐵)) |
7 | 6 | a1i 9 | . . . 4 ⊢ (𝜑 → ((((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) ∧ ((𝐴 + 𝐵) − 𝐵) = 𝐴) → 𝐴 = (𝐶 − 𝐵))) |
8 | 4, 7 | mpan2d 428 | . . 3 ⊢ (𝜑 → (((𝐴 + 𝐵) − 𝐵) = (𝐶 − 𝐵) → 𝐴 = (𝐶 − 𝐵))) |
9 | 1, 8 | syl5 32 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 → 𝐴 = (𝐶 − 𝐵))) |
10 | oveq1 5925 | . . 3 ⊢ (𝐴 = (𝐶 − 𝐵) → (𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵)) | |
11 | addlsub.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
12 | 11, 3 | npcand 8334 | . . . 4 ⊢ (𝜑 → ((𝐶 − 𝐵) + 𝐵) = 𝐶) |
13 | eqtr 2211 | . . . . 5 ⊢ (((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) ∧ ((𝐶 − 𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶) | |
14 | 13 | a1i 9 | . . . 4 ⊢ (𝜑 → (((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) ∧ ((𝐶 − 𝐵) + 𝐵) = 𝐶) → (𝐴 + 𝐵) = 𝐶)) |
15 | 12, 14 | mpan2d 428 | . . 3 ⊢ (𝜑 → ((𝐴 + 𝐵) = ((𝐶 − 𝐵) + 𝐵) → (𝐴 + 𝐵) = 𝐶)) |
16 | 10, 15 | syl5 32 | . 2 ⊢ (𝜑 → (𝐴 = (𝐶 − 𝐵) → (𝐴 + 𝐵) = 𝐶)) |
17 | 9, 16 | impbid 129 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐴 = (𝐶 − 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 + caddc 7875 − cmin 8190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 |
This theorem is referenced by: addrsub 8390 subexsub 8391 nn0ob 12049 oddennn 12549 |
Copyright terms: Public domain | W3C validator |