Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  f0rn0 GIF version

Theorem f0rn0 5357
 Description: If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
Assertion
Ref Expression
f0rn0 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
Distinct variable groups:   𝑦,𝐸   𝑦,𝑌
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem f0rn0
StepHypRef Expression
1 fdm 5318 . . 3 (𝐸:𝑋𝑌 → dom 𝐸 = 𝑋)
2 frn 5321 . . . . . . . . 9 (𝐸:𝑋𝑌 → ran 𝐸𝑌)
3 ralnex 2442 . . . . . . . . . 10 (∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸 ↔ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)
4 disj 3438 . . . . . . . . . . 11 ((𝑌 ∩ ran 𝐸) = ∅ ↔ ∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸)
5 df-ss 3111 . . . . . . . . . . . 12 (ran 𝐸𝑌 ↔ (ran 𝐸𝑌) = ran 𝐸)
6 incom 3295 . . . . . . . . . . . . . 14 (ran 𝐸𝑌) = (𝑌 ∩ ran 𝐸)
76eqeq1i 2162 . . . . . . . . . . . . 13 ((ran 𝐸𝑌) = ran 𝐸 ↔ (𝑌 ∩ ran 𝐸) = ran 𝐸)
8 eqtr2 2173 . . . . . . . . . . . . . 14 (((𝑌 ∩ ran 𝐸) = ran 𝐸 ∧ (𝑌 ∩ ran 𝐸) = ∅) → ran 𝐸 = ∅)
98ex 114 . . . . . . . . . . . . 13 ((𝑌 ∩ ran 𝐸) = ran 𝐸 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
107, 9sylbi 120 . . . . . . . . . . . 12 ((ran 𝐸𝑌) = ran 𝐸 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
115, 10sylbi 120 . . . . . . . . . . 11 (ran 𝐸𝑌 → ((𝑌 ∩ ran 𝐸) = ∅ → ran 𝐸 = ∅))
124, 11syl5bir 152 . . . . . . . . . 10 (ran 𝐸𝑌 → (∀𝑦𝑌 ¬ 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
133, 12syl5bir 152 . . . . . . . . 9 (ran 𝐸𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
142, 13syl 14 . . . . . . . 8 (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸 → ran 𝐸 = ∅))
1514imp 123 . . . . . . 7 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → ran 𝐸 = ∅)
1615adantl 275 . . . . . 6 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → ran 𝐸 = ∅)
17 dm0rn0 4796 . . . . . 6 (dom 𝐸 = ∅ ↔ ran 𝐸 = ∅)
1816, 17sylibr 133 . . . . 5 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → dom 𝐸 = ∅)
19 eqeq1 2161 . . . . . . 7 (𝑋 = dom 𝐸 → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2019eqcoms 2157 . . . . . 6 (dom 𝐸 = 𝑋 → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2120adantr 274 . . . . 5 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → (𝑋 = ∅ ↔ dom 𝐸 = ∅))
2218, 21mpbird 166 . . . 4 ((dom 𝐸 = 𝑋 ∧ (𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸)) → 𝑋 = ∅)
2322exp32 363 . . 3 (dom 𝐸 = 𝑋 → (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸𝑋 = ∅)))
241, 23mpcom 36 . 2 (𝐸:𝑋𝑌 → (¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸𝑋 = ∅))
2524imp 123 1 ((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 2125  ∀wral 2432  ∃wrex 2433   ∩ cin 3097   ⊆ wss 3098  ∅c0 3390  dom cdm 4579  ran crn 4580  ⟶wf 5159 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-cnv 4587  df-dm 4589  df-rn 4590  df-fn 5166  df-f 5167 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator