Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > moop2 | GIF version |
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
moop2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
moop2 | ⊢ ∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2 2176 | . . . 4 ⊢ ((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) | |
2 | moop2.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | vex 2715 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | opth 4196 | . . . . 5 ⊢ (〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 ↔ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ∧ 𝑥 = 𝑦)) |
5 | 4 | simprbi 273 | . . . 4 ⊢ (〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 → 𝑥 = 𝑦) |
6 | 1, 5 | syl 14 | . . 3 ⊢ ((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 𝑥 = 𝑦) |
7 | 6 | gen2 1430 | . 2 ⊢ ∀𝑥∀𝑦((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 𝑥 = 𝑦) |
8 | nfcsb1v 3064 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | nfcv 2299 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
10 | 8, 9 | nfop 3757 | . . . 4 ⊢ Ⅎ𝑥〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 |
11 | 10 | nfeq2 2311 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 |
12 | csbeq1a 3040 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
13 | id 19 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
14 | 12, 13 | opeq12d 3749 | . . . 4 ⊢ (𝑥 = 𝑦 → 〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) |
15 | 14 | eqeq2d 2169 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐴 = 〈𝐵, 𝑥〉 ↔ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉)) |
16 | 11, 15 | mo4f 2066 | . 2 ⊢ (∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 ↔ ∀𝑥∀𝑦((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 𝑥 = 𝑦)) |
17 | 7, 16 | mpbir 145 | 1 ⊢ ∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1333 = wceq 1335 ∃*wmo 2007 ∈ wcel 2128 Vcvv 2712 ⦋csb 3031 〈cop 3563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |