| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > moop2 | GIF version | ||
| Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| moop2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| moop2 | ⊢ ∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr2 2225 | . . . 4 ⊢ ((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) | |
| 2 | moop2.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
| 3 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | opth 4285 | . . . . 5 ⊢ (〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 ↔ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ∧ 𝑥 = 𝑦)) |
| 5 | 4 | simprbi 275 | . . . 4 ⊢ (〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 → 𝑥 = 𝑦) |
| 6 | 1, 5 | syl 14 | . . 3 ⊢ ((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 𝑥 = 𝑦) |
| 7 | 6 | gen2 1474 | . 2 ⊢ ∀𝑥∀𝑦((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 𝑥 = 𝑦) |
| 8 | nfcsb1v 3127 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 9 | nfcv 2349 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 10 | 8, 9 | nfop 3837 | . . . 4 ⊢ Ⅎ𝑥〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 |
| 11 | 10 | nfeq2 2361 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉 |
| 12 | csbeq1a 3103 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 13 | id 19 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 14 | 12, 13 | opeq12d 3829 | . . . 4 ⊢ (𝑥 = 𝑦 → 〈𝐵, 𝑥〉 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) |
| 15 | 14 | eqeq2d 2218 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐴 = 〈𝐵, 𝑥〉 ↔ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉)) |
| 16 | 11, 15 | mo4f 2115 | . 2 ⊢ (∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 ↔ ∀𝑥∀𝑦((𝐴 = 〈𝐵, 𝑥〉 ∧ 𝐴 = 〈⦋𝑦 / 𝑥⦌𝐵, 𝑦〉) → 𝑥 = 𝑦)) |
| 17 | 7, 16 | mpbir 146 | 1 ⊢ ∃*𝑥 𝐴 = 〈𝐵, 𝑥〉 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∃*wmo 2056 ∈ wcel 2177 Vcvv 2773 ⦋csb 3094 〈cop 3637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |