![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > moop2 | GIF version |
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
moop2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
moop2 | ⊢ ∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2 2196 | . . . 4 ⊢ ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) → ⟨𝐵, 𝑥⟩ = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) | |
2 | moop2.1 | . . . . . 6 ⊢ 𝐵 ∈ V | |
3 | vex 2742 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | opth 4239 | . . . . 5 ⊢ (⟨𝐵, 𝑥⟩ = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩ ↔ (𝐵 = ⦋𝑦 / 𝑥⦌𝐵 ∧ 𝑥 = 𝑦)) |
5 | 4 | simprbi 275 | . . . 4 ⊢ (⟨𝐵, 𝑥⟩ = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩ → 𝑥 = 𝑦) |
6 | 1, 5 | syl 14 | . . 3 ⊢ ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) → 𝑥 = 𝑦) |
7 | 6 | gen2 1450 | . 2 ⊢ ∀𝑥∀𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) → 𝑥 = 𝑦) |
8 | nfcsb1v 3092 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
9 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
10 | 8, 9 | nfop 3796 | . . . 4 ⊢ Ⅎ𝑥⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩ |
11 | 10 | nfeq2 2331 | . . 3 ⊢ Ⅎ𝑥 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩ |
12 | csbeq1a 3068 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
13 | id 19 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
14 | 12, 13 | opeq12d 3788 | . . . 4 ⊢ (𝑥 = 𝑦 → ⟨𝐵, 𝑥⟩ = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) |
15 | 14 | eqeq2d 2189 | . . 3 ⊢ (𝑥 = 𝑦 → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩)) |
16 | 11, 15 | mo4f 2086 | . 2 ⊢ (∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ ↔ ∀𝑥∀𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨⦋𝑦 / 𝑥⦌𝐵, 𝑦⟩) → 𝑥 = 𝑦)) |
17 | 7, 16 | mpbir 146 | 1 ⊢ ∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1351 = wceq 1353 ∃*wmo 2027 ∈ wcel 2148 Vcvv 2739 ⦋csb 3059 ⟨cop 3597 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |