ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0dvds GIF version

Theorem 0dvds 11957
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
0dvds (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))

Proof of Theorem 0dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 9331 . . . 4 0 ∈ ℤ
2 divides 11935 . . . 4 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
31, 2mpan 424 . . 3 (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁))
4 zcn 9325 . . . . . . 7 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
54mul01d 8414 . . . . . 6 (𝑛 ∈ ℤ → (𝑛 · 0) = 0)
6 eqtr2 2212 . . . . . 6 (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0)
75, 6sylan2 286 . . . . 5 (((𝑛 · 0) = 𝑁𝑛 ∈ ℤ) → 𝑁 = 0)
87ancoms 268 . . . 4 ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0)
98rexlimiva 2606 . . 3 (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁𝑁 = 0)
103, 9biimtrdi 163 . 2 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
11 dvds0 11952 . . . 4 (0 ∈ ℤ → 0 ∥ 0)
121, 11ax-mp 5 . . 3 0 ∥ 0
13 breq2 4034 . . 3 (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0))
1412, 13mpbiri 168 . 2 (𝑁 = 0 → 0 ∥ 𝑁)
1510, 14impbid1 142 1 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4030  (class class class)co 5919  0cc0 7874   · cmul 7879  cz 9320  cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195  df-z 9321  df-dvds 11934
This theorem is referenced by:  zdvdsdc  11958  dvdsabseq  11992  bezoutlemle  12148  dfgcd3  12150  dfgcd2  12154  dvdssq  12171  rpdvds  12240  pcdvdstr  12468  pc2dvds  12471  znf1o  14150
  Copyright terms: Public domain W3C validator