Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0dvds | GIF version |
Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
0dvds | ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9202 | . . . 4 ⊢ 0 ∈ ℤ | |
2 | divides 11729 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) | |
3 | 1, 2 | mpan 421 | . . 3 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) |
4 | zcn 9196 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
5 | 4 | mul01d 8291 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 0) = 0) |
6 | eqtr2 2184 | . . . . . 6 ⊢ (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0) | |
7 | 5, 6 | sylan2 284 | . . . . 5 ⊢ (((𝑛 · 0) = 𝑁 ∧ 𝑛 ∈ ℤ) → 𝑁 = 0) |
8 | 7 | ancoms 266 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0) |
9 | 8 | rexlimiva 2578 | . . 3 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁 → 𝑁 = 0) |
10 | 3, 9 | syl6bi 162 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 → 𝑁 = 0)) |
11 | dvds0 11746 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
12 | 1, 11 | ax-mp 5 | . . 3 ⊢ 0 ∥ 0 |
13 | breq2 3986 | . . 3 ⊢ (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0)) | |
14 | 12, 13 | mpbiri 167 | . 2 ⊢ (𝑁 = 0 → 0 ∥ 𝑁) |
15 | 10, 14 | impbid1 141 | 1 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 class class class wbr 3982 (class class class)co 5842 0cc0 7753 · cmul 7758 ℤcz 9191 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-neg 8072 df-z 9192 df-dvds 11728 |
This theorem is referenced by: zdvdsdc 11752 dvdsabseq 11785 bezoutlemle 11941 dfgcd3 11943 dfgcd2 11947 dvdssq 11964 rpdvds 12031 pcdvdstr 12258 pc2dvds 12261 |
Copyright terms: Public domain | W3C validator |