| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0dvds | GIF version | ||
| Description: Only 0 is divisible by 0. Theorem 1.1(h) in [ApostolNT] p. 14. (Contributed by Paul Chapman, 21-Mar-2011.) |
| Ref | Expression |
|---|---|
| 0dvds | ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9390 | . . . 4 ⊢ 0 ∈ ℤ | |
| 2 | divides 12144 | . . . 4 ⊢ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) | |
| 3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁)) |
| 4 | zcn 9384 | . . . . . . 7 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℂ) | |
| 5 | 4 | mul01d 8472 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑛 · 0) = 0) |
| 6 | eqtr2 2225 | . . . . . 6 ⊢ (((𝑛 · 0) = 𝑁 ∧ (𝑛 · 0) = 0) → 𝑁 = 0) | |
| 7 | 5, 6 | sylan2 286 | . . . . 5 ⊢ (((𝑛 · 0) = 𝑁 ∧ 𝑛 ∈ ℤ) → 𝑁 = 0) |
| 8 | 7 | ancoms 268 | . . . 4 ⊢ ((𝑛 ∈ ℤ ∧ (𝑛 · 0) = 𝑁) → 𝑁 = 0) |
| 9 | 8 | rexlimiva 2619 | . . 3 ⊢ (∃𝑛 ∈ ℤ (𝑛 · 0) = 𝑁 → 𝑁 = 0) |
| 10 | 3, 9 | biimtrdi 163 | . 2 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 → 𝑁 = 0)) |
| 11 | dvds0 12161 | . . . 4 ⊢ (0 ∈ ℤ → 0 ∥ 0) | |
| 12 | 1, 11 | ax-mp 5 | . . 3 ⊢ 0 ∥ 0 |
| 13 | breq2 4051 | . . 3 ⊢ (𝑁 = 0 → (0 ∥ 𝑁 ↔ 0 ∥ 0)) | |
| 14 | 12, 13 | mpbiri 168 | . 2 ⊢ (𝑁 = 0 → 0 ∥ 𝑁) |
| 15 | 10, 14 | impbid1 142 | 1 ⊢ (𝑁 ∈ ℤ → (0 ∥ 𝑁 ↔ 𝑁 = 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 class class class wbr 4047 (class class class)co 5951 0cc0 7932 · cmul 7937 ℤcz 9379 ∥ cdvds 12142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-setind 4589 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-sub 8252 df-neg 8253 df-z 9380 df-dvds 12143 |
| This theorem is referenced by: zdvdsdc 12167 fsumdvds 12197 dvdsabseq 12202 bezoutlemle 12373 dfgcd3 12375 dfgcd2 12379 dvdssq 12396 rpdvds 12465 pcdvdstr 12694 pc2dvds 12697 znf1o 14457 |
| Copyright terms: Public domain | W3C validator |