![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr3 | GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2195 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
2 | eqtr 2211 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | sylan2b 287 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: eueq 2932 euind 2948 reuind 2966 preqsn 3802 eusv1 4484 funopg 5289 funinsn 5304 foco 5488 mpofun 6021 enq0tr 7496 lteupri 7679 elrealeu 7891 rereceu 7951 receuap 8690 xrltso 9865 xrlttri3 9866 iseqf1olemab 10576 fsumparts 11616 odd2np1 12017 grpinveu 13113 exmidsbthrlem 15582 |
Copyright terms: Public domain | W3C validator |