ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3 GIF version

Theorem eqtr3 2119
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.)
Assertion
Ref Expression
eqtr3 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)

Proof of Theorem eqtr3
StepHypRef Expression
1 eqcom 2102 . 2 (𝐵 = 𝐶𝐶 = 𝐵)
2 eqtr 2117 . 2 ((𝐴 = 𝐶𝐶 = 𝐵) → 𝐴 = 𝐵)
31, 2sylan2b 283 1 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1391  ax-gen 1393  ax-4 1455  ax-17 1474  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-cleq 2093
This theorem is referenced by:  eueq  2808  euind  2824  reuind  2842  preqsn  3649  eusv1  4311  funopg  5093  funinsn  5108  foco  5291  mpofun  5805  enq0tr  7143  lteupri  7326  elrealeu  7517  rereceu  7574  receuap  8291  xrltso  9423  xrlttri3  9424  iseqf1olemab  10103  fsumparts  11078  odd2np1  11365  exmidsbthrlem  12801
  Copyright terms: Public domain W3C validator