| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3 | GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2231 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
| 2 | eqtr 2247 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐵) → 𝐴 = 𝐵) | |
| 3 | 1, 2 | sylan2b 287 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eueq 2974 euind 2990 reuind 3008 ssprsseq 3829 preqsn 3852 eusv1 4542 funopg 5351 funinsn 5369 foco 5558 funopdmsn 5818 mpofun 6105 enq0tr 7617 lteupri 7800 elrealeu 8012 rereceu 8072 receuap 8812 xrltso 9988 xrlttri3 9989 iseqf1olemab 10719 fsumparts 11976 odd2np1 12379 grpinveu 13566 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |