| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3 | GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2208 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
| 2 | eqtr 2224 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐵) → 𝐴 = 𝐵) | |
| 3 | 1, 2 | sylan2b 287 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: eueq 2948 euind 2964 reuind 2982 preqsn 3822 eusv1 4507 funopg 5314 funinsn 5332 foco 5521 funopdmsn 5777 mpofun 6060 enq0tr 7567 lteupri 7750 elrealeu 7962 rereceu 8022 receuap 8762 xrltso 9938 xrlttri3 9939 iseqf1olemab 10669 fsumparts 11856 odd2np1 12259 grpinveu 13445 exmidsbthrlem 16102 |
| Copyright terms: Public domain | W3C validator |