ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3 GIF version

Theorem eqtr3 2249
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.)
Assertion
Ref Expression
eqtr3 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)

Proof of Theorem eqtr3
StepHypRef Expression
1 eqcom 2231 . 2 (𝐵 = 𝐶𝐶 = 𝐵)
2 eqtr 2247 . 2 ((𝐴 = 𝐶𝐶 = 𝐵) → 𝐴 = 𝐵)
31, 2sylan2b 287 1 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222
This theorem is referenced by:  eueq  2974  euind  2990  reuind  3008  ssprsseq  3829  preqsn  3852  eusv1  4542  funopg  5351  funinsn  5369  foco  5558  funopdmsn  5818  mpofun  6105  enq0tr  7617  lteupri  7800  elrealeu  8012  rereceu  8072  receuap  8812  xrltso  9988  xrlttri3  9989  iseqf1olemab  10719  fsumparts  11976  odd2np1  12379  grpinveu  13566  exmidsbthrlem  16349
  Copyright terms: Public domain W3C validator