Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3 | GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2172 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
2 | eqtr 2188 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | sylan2b 285 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: eueq 2901 euind 2917 reuind 2935 preqsn 3762 eusv1 4437 funopg 5232 funinsn 5247 foco 5430 mpofun 5955 enq0tr 7396 lteupri 7579 elrealeu 7791 rereceu 7851 receuap 8587 xrltso 9753 xrlttri3 9754 iseqf1olemab 10445 fsumparts 11433 odd2np1 11832 grpinveu 12741 exmidsbthrlem 14054 |
Copyright terms: Public domain | W3C validator |