ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3 GIF version

Theorem eqtr3 2213
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.)
Assertion
Ref Expression
eqtr3 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)

Proof of Theorem eqtr3
StepHypRef Expression
1 eqcom 2195 . 2 (𝐵 = 𝐶𝐶 = 𝐵)
2 eqtr 2211 . 2 ((𝐴 = 𝐶𝐶 = 𝐵) → 𝐴 = 𝐵)
31, 2sylan2b 287 1 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186
This theorem is referenced by:  eueq  2931  euind  2947  reuind  2965  preqsn  3801  eusv1  4483  funopg  5288  funinsn  5303  foco  5487  mpofun  6020  enq0tr  7494  lteupri  7677  elrealeu  7889  rereceu  7949  receuap  8688  xrltso  9862  xrlttri3  9863  iseqf1olemab  10573  fsumparts  11613  odd2np1  12014  grpinveu  13110  exmidsbthrlem  15512
  Copyright terms: Public domain W3C validator