ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3 GIF version

Theorem eqtr3 2216
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.)
Assertion
Ref Expression
eqtr3 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)

Proof of Theorem eqtr3
StepHypRef Expression
1 eqcom 2198 . 2 (𝐵 = 𝐶𝐶 = 𝐵)
2 eqtr 2214 . 2 ((𝐴 = 𝐶𝐶 = 𝐵) → 𝐴 = 𝐵)
31, 2sylan2b 287 1 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  eueq  2935  euind  2951  reuind  2969  preqsn  3806  eusv1  4488  funopg  5293  funinsn  5308  foco  5494  mpofun  6028  enq0tr  7520  lteupri  7703  elrealeu  7915  rereceu  7975  receuap  8715  xrltso  9890  xrlttri3  9891  iseqf1olemab  10613  fsumparts  11654  odd2np1  12057  grpinveu  13242  exmidsbthrlem  15779
  Copyright terms: Public domain W3C validator