| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3 | GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2198 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
| 2 | eqtr 2214 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐵) → 𝐴 = 𝐵) | |
| 3 | 1, 2 | sylan2b 287 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eueq 2935 euind 2951 reuind 2969 preqsn 3806 eusv1 4488 funopg 5293 funinsn 5308 foco 5494 mpofun 6028 enq0tr 7520 lteupri 7703 elrealeu 7915 rereceu 7975 receuap 8715 xrltso 9890 xrlttri3 9891 iseqf1olemab 10613 fsumparts 11654 odd2np1 12057 grpinveu 13242 exmidsbthrlem 15779 |
| Copyright terms: Public domain | W3C validator |