ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3 GIF version

Theorem eqtr3 2216
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.)
Assertion
Ref Expression
eqtr3 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)

Proof of Theorem eqtr3
StepHypRef Expression
1 eqcom 2198 . 2 (𝐵 = 𝐶𝐶 = 𝐵)
2 eqtr 2214 . 2 ((𝐴 = 𝐶𝐶 = 𝐵) → 𝐴 = 𝐵)
31, 2sylan2b 287 1 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189
This theorem is referenced by:  eueq  2935  euind  2951  reuind  2969  preqsn  3805  eusv1  4487  funopg  5292  funinsn  5307  foco  5491  mpofun  6024  enq0tr  7501  lteupri  7684  elrealeu  7896  rereceu  7956  receuap  8696  xrltso  9871  xrlttri3  9872  iseqf1olemab  10594  fsumparts  11635  odd2np1  12038  grpinveu  13170  exmidsbthrlem  15666
  Copyright terms: Public domain W3C validator