| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr3 | GIF version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
| Ref | Expression |
|---|---|
| eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2206 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
| 2 | eqtr 2222 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐵) → 𝐴 = 𝐵) | |
| 3 | 1, 2 | sylan2b 287 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: eueq 2943 euind 2959 reuind 2977 preqsn 3815 eusv1 4498 funopg 5304 funinsn 5322 foco 5508 funopdmsn 5763 mpofun 6046 enq0tr 7546 lteupri 7729 elrealeu 7941 rereceu 8001 receuap 8741 xrltso 9917 xrlttri3 9918 iseqf1olemab 10645 fsumparts 11723 odd2np1 12126 grpinveu 13312 exmidsbthrlem 15894 |
| Copyright terms: Public domain | W3C validator |