Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr3 | GIF version |
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
eqtr3 | ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2167 | . 2 ⊢ (𝐵 = 𝐶 ↔ 𝐶 = 𝐵) | |
2 | eqtr 2183 | . 2 ⊢ ((𝐴 = 𝐶 ∧ 𝐶 = 𝐵) → 𝐴 = 𝐵) | |
3 | 1, 2 | sylan2b 285 | 1 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eueq 2897 euind 2913 reuind 2931 preqsn 3755 eusv1 4430 funopg 5222 funinsn 5237 foco 5420 mpofun 5944 enq0tr 7375 lteupri 7558 elrealeu 7770 rereceu 7830 receuap 8566 xrltso 9732 xrlttri3 9733 iseqf1olemab 10424 fsumparts 11411 odd2np1 11810 exmidsbthrlem 13901 |
Copyright terms: Public domain | W3C validator |