ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr3 GIF version

Theorem eqtr3 2226
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.)
Assertion
Ref Expression
eqtr3 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)

Proof of Theorem eqtr3
StepHypRef Expression
1 eqcom 2208 . 2 (𝐵 = 𝐶𝐶 = 𝐵)
2 eqtr 2224 . 2 ((𝐴 = 𝐶𝐶 = 𝐵) → 𝐴 = 𝐵)
31, 2sylan2b 287 1 ((𝐴 = 𝐶𝐵 = 𝐶) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-cleq 2199
This theorem is referenced by:  eueq  2948  euind  2964  reuind  2982  preqsn  3822  eusv1  4507  funopg  5314  funinsn  5332  foco  5521  funopdmsn  5777  mpofun  6060  enq0tr  7567  lteupri  7750  elrealeu  7962  rereceu  8022  receuap  8762  xrltso  9938  xrlttri3  9939  iseqf1olemab  10669  fsumparts  11856  odd2np1  12259  grpinveu  13445  exmidsbthrlem  16102
  Copyright terms: Public domain W3C validator