| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eueq | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| eueq | ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 2216 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
| 2 | 1 | gen2 1464 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
| 3 | 2 | biantru 302 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦))) |
| 4 | isset 2769 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 5 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 6 | 5 | eu4 2107 | . 2 ⊢ (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦))) |
| 7 | 3, 4, 6 | 3bitr4i 212 | 1 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: eueq1 2936 moeq 2939 mosubt 2941 reuhypd 4506 mptfng 5383 gsum0g 13039 gsumval2 13040 upxp 14508 |
| Copyright terms: Public domain | W3C validator |