ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq GIF version

Theorem eueq 2944
Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eueq (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2225 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
21gen2 1473 . . 3 𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
32biantru 302 . 2 (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)))
4 isset 2778 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
5 eqeq1 2212 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
65eu4 2116 . 2 (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)))
73, 4, 63bitr4i 212 1 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1515  ∃!weu 2054  wcel 2176  Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by:  eueq1  2945  moeq  2948  mosubt  2950  reuhypd  4518  mptfng  5401  gsum0g  13228  gsumval2  13229  upxp  14744
  Copyright terms: Public domain W3C validator