| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eueq | GIF version | ||
| Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| eueq | ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 2227 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
| 2 | 1 | gen2 1474 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
| 3 | 2 | biantru 302 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦))) |
| 4 | isset 2783 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 5 | eqeq1 2214 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 6 | 5 | eu4 2118 | . 2 ⊢ (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦))) |
| 7 | 3, 4, 6 | 3bitr4i 212 | 1 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 = wceq 1373 ∃wex 1516 ∃!weu 2055 ∈ wcel 2178 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-v 2778 |
| This theorem is referenced by: eueq1 2952 moeq 2955 mosubt 2957 reuhypd 4536 mptfng 5421 gsum0g 13343 gsumval2 13344 upxp 14859 |
| Copyright terms: Public domain | W3C validator |