Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq GIF version

Theorem eueq 2883
 Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eueq (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2177 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
21gen2 1430 . . 3 𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
32biantru 300 . 2 (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)))
4 isset 2718 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
5 eqeq1 2164 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
65eu4 2068 . 2 (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)))
73, 4, 63bitr4i 211 1 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104  ∀wal 1333   = wceq 1335  ∃wex 1472  ∃!weu 2006   ∈ wcel 2128  Vcvv 2712 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-v 2714 This theorem is referenced by:  eueq1  2884  moeq  2887  mosubt  2889  reuhypd  4429  mptfng  5292  upxp  12632
 Copyright terms: Public domain W3C validator