![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eueq | GIF version |
Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
eueq | ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2197 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
2 | 1 | gen2 1450 | . . 3 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
3 | 2 | biantru 302 | . 2 ⊢ (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦))) |
4 | isset 2743 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
5 | eqeq1 2184 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
6 | 5 | eu4 2088 | . 2 ⊢ (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦))) |
7 | 3, 4, 6 | 3bitr4i 212 | 1 ⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1351 = wceq 1353 ∃wex 1492 ∃!weu 2026 ∈ wcel 2148 Vcvv 2737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2739 |
This theorem is referenced by: eueq1 2909 moeq 2912 mosubt 2914 reuhypd 4471 mptfng 5341 upxp 13665 |
Copyright terms: Public domain | W3C validator |