ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eueq GIF version

Theorem eueq 2822
Description: Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
eueq (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem eueq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2132 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
21gen2 1407 . . 3 𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
32biantru 298 . 2 (∃𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)))
4 isset 2661 . 2 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
5 eqeq1 2119 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
65eu4 2035 . 2 (∃!𝑥 𝑥 = 𝐴 ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)))
73, 4, 63bitr4i 211 1 (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1310   = wceq 1312  wex 1449  wcel 1461  ∃!weu 1973  Vcvv 2655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-v 2657
This theorem is referenced by:  eueq1  2823  moeq  2826  mosubt  2828  reuhypd  4350  mptfng  5204  upxp  12276
  Copyright terms: Public domain W3C validator