ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqpru GIF version

Theorem mulnqpru 7370
Description: Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
Assertion
Ref Expression
mulnqpru ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))

Proof of Theorem mulnqpru
Dummy variables 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 7202 . . . . . . 7 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
21adantl 275 . . . . . 6 (((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
3 prop 7276 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
4 elprnqu 7283 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
53, 4sylan 281 . . . . . . . 8 ((𝐴P𝐺 ∈ (2nd𝐴)) → 𝐺Q)
65ad2antrr 479 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐺Q)
7 prop 7276 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
8 elprnqu 7283 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
97, 8sylan 281 . . . . . . . 8 ((𝐵P𝐻 ∈ (2nd𝐵)) → 𝐻Q)
109ad2antlr 480 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝐻Q)
11 mulclnq 7177 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 ·Q 𝐻) ∈ Q)
126, 10, 11syl2anc 408 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 𝐻) ∈ Q)
13 simpr 109 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → 𝑋Q)
14 recclnq 7193 . . . . . . 7 (𝐻Q → (*Q𝐻) ∈ Q)
1510, 14syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (*Q𝐻) ∈ Q)
16 mulcomnqg 7184 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
1716adantl 275 . . . . . 6 (((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
182, 12, 13, 15, 17caovord2d 5933 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 ↔ ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) <Q (𝑋 ·Q (*Q𝐻))))
19 mulassnqg 7185 . . . . . . . 8 ((𝐺Q𝐻Q ∧ (*Q𝐻) ∈ Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
206, 10, 15, 19syl3anc 1216 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
21 recidnq 7194 . . . . . . . . 9 (𝐻Q → (𝐻 ·Q (*Q𝐻)) = 1Q)
2221oveq2d 5783 . . . . . . . 8 (𝐻Q → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
2310, 22syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
24 mulidnq 7190 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
256, 24syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 1Q) = 𝐺)
2620, 23, 253eqtrd 2174 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = 𝐺)
2726breq1d 3934 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) <Q (𝑋 ·Q (*Q𝐻)) ↔ 𝐺 <Q (𝑋 ·Q (*Q𝐻))))
2818, 27bitrd 187 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝐺 <Q (𝑋 ·Q (*Q𝐻))))
29 prcunqu 7286 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (2nd𝐴)) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
303, 29sylan 281 . . . . 5 ((𝐴P𝐺 ∈ (2nd𝐴)) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
3130ad2antrr 479 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐺 <Q (𝑋 ·Q (*Q𝐻)) → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
3228, 31sylbid 149 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 → (𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴)))
33 df-imp 7270 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}⟩)
34 mulclnq 7177 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
3533, 34genppreclu 7316 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) ∧ 𝐻 ∈ (2nd𝐵)) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
3635exp4b 364 . . . . . . 7 (𝐴P → (𝐵P → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → (𝐻 ∈ (2nd𝐵) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))))
3736com34 83 . . . . . 6 (𝐴P → (𝐵P → (𝐻 ∈ (2nd𝐵) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))))
3837imp32 255 . . . . 5 ((𝐴P ∧ (𝐵P𝐻 ∈ (2nd𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
3938adantlr 468 . . . 4 (((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
4039adantr 274 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ∈ (2nd𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
4132, 40syld 45 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋 → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵))))
42 mulassnqg 7185 . . . . 5 ((𝑋Q ∧ (*Q𝐻) ∈ Q𝐻Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
4313, 15, 10, 42syl3anc 1216 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
44 mulcomnqg 7184 . . . . . . 7 (((*Q𝐻) ∈ Q𝐻Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4515, 10, 44syl2anc 408 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4610, 21syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝐻 ·Q (*Q𝐻)) = 1Q)
4745, 46eqtrd 2170 . . . . 5 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = 1Q)
4847oveq2d 5783 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)) = (𝑋 ·Q 1Q))
49 mulidnq 7190 . . . . 5 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
5049adantl 275 . . . 4 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
5143, 48, 503eqtrd 2174 . . 3 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = 𝑋)
5251eleq1d 2206 . 2 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ 𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))
5341, 52sylibd 148 1 ((((𝐴P𝐺 ∈ (2nd𝐴)) ∧ (𝐵P𝐻 ∈ (2nd𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) <Q 𝑋𝑋 ∈ (2nd ‘(𝐴 ·P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962   = wceq 1331  wcel 1480  cop 3525   class class class wbr 3924  cfv 5118  (class class class)co 5767  1st c1st 6029  2nd c2nd 6030  Qcnq 7081  1Qc1q 7082   ·Q cmq 7084  *Qcrq 7085   <Q cltq 7086  Pcnp 7092   ·P cmp 7095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-1o 6306  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-mi 7107  df-lti 7108  df-mpq 7146  df-enq 7148  df-nqqs 7149  df-mqqs 7151  df-1nqqs 7152  df-rq 7153  df-ltnqqs 7154  df-inp 7267  df-imp 7270
This theorem is referenced by:  mullocprlem  7371  mulclpr  7373
  Copyright terms: Public domain W3C validator