Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lemul12a | GIF version |
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.) |
Ref | Expression |
---|---|
lemul12a | ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . 4 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ)) | |
2 | simpll 519 | . . . . 5 ⊢ (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) → 𝐶 ∈ ℝ) | |
3 | 2 | ad2antlr 481 | . . . 4 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → 𝐶 ∈ ℝ) |
4 | simplrr 526 | . . . . 5 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → 𝐷 ∈ ℝ) | |
5 | 0re 7899 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
6 | letr 7981 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷) → 0 ≤ 𝐷)) | |
7 | 5, 6 | mp3an1 1314 | . . . . . . . . 9 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐷) → 0 ≤ 𝐷)) |
8 | 7 | exp4b 365 | . . . . . . . 8 ⊢ (𝐶 ∈ ℝ → (𝐷 ∈ ℝ → (0 ≤ 𝐶 → (𝐶 ≤ 𝐷 → 0 ≤ 𝐷)))) |
9 | 8 | com23 78 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ → (0 ≤ 𝐶 → (𝐷 ∈ ℝ → (𝐶 ≤ 𝐷 → 0 ≤ 𝐷)))) |
10 | 9 | imp41 351 | . . . . . 6 ⊢ ((((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) ∧ 𝐶 ≤ 𝐷) → 0 ≤ 𝐷) |
11 | 10 | ad2ant2l 500 | . . . . 5 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → 0 ≤ 𝐷) |
12 | 4, 11 | jca 304 | . . . 4 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)) |
13 | 1, 3, 12 | jca32 308 | . . 3 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷)))) |
14 | simpr 109 | . . 3 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) | |
15 | lemul12b 8756 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) | |
16 | 13, 14, 15 | sylc 62 | . 2 ⊢ (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)) |
17 | 16 | ex 114 | 1 ⊢ ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐵 ∧ 𝐶 ≤ 𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 · cmul 7758 ≤ cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 |
This theorem is referenced by: lemulge11 8761 lediv12a 8789 lemul12ad 8837 expge1 10492 leexp1a 10510 faclbnd6 10657 mertenslemi1 11476 lgslem3 13543 |
Copyright terms: Public domain | W3C validator |