ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemul12a GIF version

Theorem lemul12a 8632
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
lemul12a ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))

Proof of Theorem lemul12a
StepHypRef Expression
1 simpll 518 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ))
2 simpll 518 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) → 𝐶 ∈ ℝ)
32ad2antlr 480 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 𝐶 ∈ ℝ)
4 simplrr 525 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 𝐷 ∈ ℝ)
5 0re 7778 . . . . . . . . . 10 0 ∈ ℝ
6 letr 7859 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶𝐶𝐷) → 0 ≤ 𝐷))
75, 6mp3an1 1302 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶𝐶𝐷) → 0 ≤ 𝐷))
87exp4b 364 . . . . . . . 8 (𝐶 ∈ ℝ → (𝐷 ∈ ℝ → (0 ≤ 𝐶 → (𝐶𝐷 → 0 ≤ 𝐷))))
98com23 78 . . . . . . 7 (𝐶 ∈ ℝ → (0 ≤ 𝐶 → (𝐷 ∈ ℝ → (𝐶𝐷 → 0 ≤ 𝐷))))
109imp41 350 . . . . . 6 ((((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) ∧ 𝐶𝐷) → 0 ≤ 𝐷)
1110ad2ant2l 499 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 0 ≤ 𝐷)
124, 11jca 304 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))
131, 3, 12jca32 308 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))))
14 simpr 109 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴𝐵𝐶𝐷))
15 lemul12b 8631 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
1613, 14, 15sylc 62 . 2 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))
1716ex 114 1 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480   class class class wbr 3929  (class class class)co 5774  cr 7631  0cc0 7632   · cmul 7637  cle 7813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356
This theorem is referenced by:  lemulge11  8636  lediv12a  8664  lemul12ad  8712  expge1  10342  leexp1a  10360  faclbnd6  10502  mertenslemi1  11316
  Copyright terms: Public domain W3C validator