ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lemul12a GIF version

Theorem lemul12a 8997
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
lemul12a ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))

Proof of Theorem lemul12a
StepHypRef Expression
1 simpll 527 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ))
2 simpll 527 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) → 𝐶 ∈ ℝ)
32ad2antlr 489 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 𝐶 ∈ ℝ)
4 simplrr 536 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 𝐷 ∈ ℝ)
5 0re 8134 . . . . . . . . . 10 0 ∈ ℝ
6 letr 8217 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶𝐶𝐷) → 0 ≤ 𝐷))
75, 6mp3an1 1358 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((0 ≤ 𝐶𝐶𝐷) → 0 ≤ 𝐷))
87exp4b 367 . . . . . . . 8 (𝐶 ∈ ℝ → (𝐷 ∈ ℝ → (0 ≤ 𝐶 → (𝐶𝐷 → 0 ≤ 𝐷))))
98com23 78 . . . . . . 7 (𝐶 ∈ ℝ → (0 ≤ 𝐶 → (𝐷 ∈ ℝ → (𝐶𝐷 → 0 ≤ 𝐷))))
109imp41 353 . . . . . 6 ((((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ) ∧ 𝐶𝐷) → 0 ≤ 𝐷)
1110ad2ant2l 508 . . . . 5 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → 0 ≤ 𝐷)
124, 11jca 306 . . . 4 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))
131, 3, 12jca32 310 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))))
14 simpr 110 . . 3 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴𝐵𝐶𝐷))
15 lemul12b 8996 . . 3 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
1613, 14, 15sylc 62 . 2 (((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) ∧ (𝐴𝐵𝐶𝐷)) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷))
1716ex 115 1 ((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200   class class class wbr 4082  (class class class)co 5994  cr 7986  0cc0 7987   · cmul 7992  cle 8170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4381  df-po 4384  df-iso 4385  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-iota 5274  df-fun 5316  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717
This theorem is referenced by:  lemulge11  9001  lediv12a  9029  lemul12ad  9077  expge1  10785  leexp1a  10803  faclbnd6  10953  mertenslemi1  12032  lgslem3  15666
  Copyright terms: Public domain W3C validator