ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzo1fzo0n0 GIF version

Theorem fzo1fzo0n0 9960
Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.)
Assertion
Ref Expression
fzo1fzo0n0 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))

Proof of Theorem fzo1fzo0n0
StepHypRef Expression
1 elfzo2 9927 . . 3 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2 elnnuz 9362 . . . . . . 7 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
3 nnnn0 8984 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
43adantr 274 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ0)
54adantr 274 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
6 nngt0 8745 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 0 < 𝐾)
7 0red 7767 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℝ)
8 nnre 8727 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
98adantl 275 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℝ)
10 zre 9058 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110adantr 274 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑁 ∈ ℝ)
12 lttr 7838 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
137, 9, 11, 12syl3anc 1216 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
14 elnnz 9064 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1514simplbi2 382 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0 < 𝑁𝑁 ∈ ℕ))
1615adantr 274 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (0 < 𝑁𝑁 ∈ ℕ))
1713, 16syld 45 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 𝑁 ∈ ℕ))
1817exp4b 364 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐾 < 𝑁𝑁 ∈ ℕ))))
1918com13 80 . . . . . . . . . . 11 (0 < 𝐾 → (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ))))
206, 19mpcom 36 . . . . . . . . . 10 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ)))
2120imp31 254 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 simpr 109 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
235, 21, 223jca 1161 . . . . . . . 8 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2423exp31 361 . . . . . . 7 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
252, 24sylbir 134 . . . . . 6 (𝐾 ∈ (ℤ‘1) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
26253imp 1175 . . . . 5 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
27 elfzo0 9959 . . . . 5 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2826, 27sylibr 133 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ∈ (0..^𝑁))
29 nnne0 8748 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
302, 29sylbir 134 . . . . 5 (𝐾 ∈ (ℤ‘1) → 𝐾 ≠ 0)
31303ad2ant1 1002 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ≠ 0)
3228, 31jca 304 . . 3 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
331, 32sylbi 120 . 2 (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
34 elnnne0 8991 . . . . . 6 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
35 nnge1 8743 . . . . . 6 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
3634, 35sylbir 134 . . . . 5 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → 1 ≤ 𝐾)
37363ad2antl1 1143 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 1 ≤ 𝐾)
38 simpl3 986 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 < 𝑁)
39 nn0z 9074 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
4039adantr 274 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
41 1zzd 9081 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℤ)
42 nnz 9073 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342adantl 275 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4440, 41, 433jca 1161 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
45443adant3 1001 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4645adantr 274 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
47 elfzo 9926 . . . . 5 ((𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4846, 47syl 14 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4937, 38, 48mpbir2and 928 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5027, 49sylanb 282 . 2 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5133, 50impbii 125 1 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 962  wcel 1480  wne 2308   class class class wbr 3929  cfv 5123  (class class class)co 5774  cr 7619  0cc0 7620  1c1 7621   < clt 7800  cle 7801  cn 8720  0cn0 8977  cz 9054  cuz 9326  ..^cfzo 9919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791  df-fzo 9920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator