ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzo1fzo0n0 GIF version

Theorem fzo1fzo0n0 10139
Description: An integer between 1 and an upper bound of a half-open integer range is not 0 and between 0 and the upper bound of the half-open integer range. (Contributed by Alexander van der Vekens, 21-Mar-2018.)
Assertion
Ref Expression
fzo1fzo0n0 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))

Proof of Theorem fzo1fzo0n0
StepHypRef Expression
1 elfzo2 10106 . . 3 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2 elnnuz 9523 . . . . . . 7 (𝐾 ∈ ℕ ↔ 𝐾 ∈ (ℤ‘1))
3 nnnn0 9142 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
43adantr 274 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℕ0)
54adantr 274 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
6 nngt0 8903 . . . . . . . . . . 11 (𝐾 ∈ ℕ → 0 < 𝐾)
7 0red 7921 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 0 ∈ ℝ)
8 nnre 8885 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
98adantl 275 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝐾 ∈ ℝ)
10 zre 9216 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1110adantr 274 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → 𝑁 ∈ ℝ)
12 lttr 7993 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
137, 9, 11, 12syl3anc 1233 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 0 < 𝑁))
14 elnnz 9222 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℤ ∧ 0 < 𝑁))
1514simplbi2 383 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0 < 𝑁𝑁 ∈ ℕ))
1615adantr 274 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (0 < 𝑁𝑁 ∈ ℕ))
1713, 16syld 45 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → ((0 < 𝐾𝐾 < 𝑁) → 𝑁 ∈ ℕ))
1817exp4b 365 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐾 < 𝑁𝑁 ∈ ℕ))))
1918com13 80 . . . . . . . . . . 11 (0 < 𝐾 → (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ))))
206, 19mpcom 36 . . . . . . . . . 10 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁𝑁 ∈ ℕ)))
2120imp31 254 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℕ)
22 simpr 109 . . . . . . . . 9 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
235, 21, 223jca 1172 . . . . . . . 8 (((𝐾 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2423exp31 362 . . . . . . 7 (𝐾 ∈ ℕ → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
252, 24sylbir 134 . . . . . 6 (𝐾 ∈ (ℤ‘1) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))))
26253imp 1188 . . . . 5 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
27 elfzo0 10138 . . . . 5 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
2826, 27sylibr 133 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ∈ (0..^𝑁))
29 nnne0 8906 . . . . . 6 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
302, 29sylbir 134 . . . . 5 (𝐾 ∈ (ℤ‘1) → 𝐾 ≠ 0)
31303ad2ant1 1013 . . . 4 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → 𝐾 ≠ 0)
3228, 31jca 304 . . 3 ((𝐾 ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
331, 32sylbi 120 . 2 (𝐾 ∈ (1..^𝑁) → (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
34 elnnne0 9149 . . . . . 6 (𝐾 ∈ ℕ ↔ (𝐾 ∈ ℕ0𝐾 ≠ 0))
35 nnge1 8901 . . . . . 6 (𝐾 ∈ ℕ → 1 ≤ 𝐾)
3634, 35sylbir 134 . . . . 5 ((𝐾 ∈ ℕ0𝐾 ≠ 0) → 1 ≤ 𝐾)
37363ad2antl1 1154 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 1 ≤ 𝐾)
38 simpl3 997 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 < 𝑁)
39 nn0z 9232 . . . . . . . . 9 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
4039adantr 274 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝐾 ∈ ℤ)
41 1zzd 9239 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 1 ∈ ℤ)
42 nnz 9231 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4342adantl 275 . . . . . . . 8 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
4440, 41, 433jca 1172 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
45443adant3 1012 . . . . . 6 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4645adantr 274 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ))
47 elfzo 10105 . . . . 5 ((𝐾 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4846, 47syl 14 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → (𝐾 ∈ (1..^𝑁) ↔ (1 ≤ 𝐾𝐾 < 𝑁)))
4937, 38, 48mpbir2and 939 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5027, 49sylanb 282 . 2 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0) → 𝐾 ∈ (1..^𝑁))
5133, 50impbii 125 1 (𝐾 ∈ (1..^𝑁) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾 ≠ 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973  wcel 2141  wne 2340   class class class wbr 3989  cfv 5198  (class class class)co 5853  cr 7773  0cc0 7774  1c1 7775   < clt 7954  cle 7955  cn 8878  0cn0 9135  cz 9212  cuz 9487  ..^cfzo 10098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099
This theorem is referenced by:  modprmn0modprm0  12210
  Copyright terms: Public domain W3C validator