ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oddprmgt2 GIF version

Theorem oddprmgt2 12315
Description: An odd prime is greater than 2. (Contributed by AV, 20-Aug-2021.)
Assertion
Ref Expression
oddprmgt2 (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)

Proof of Theorem oddprmgt2
StepHypRef Expression
1 eldifsn 3750 . 2 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
2 prmuz2 12312 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
3 eluz2 9612 . . . . 5 (𝑃 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 2 ≤ 𝑃))
4 zltlen 9409 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (2 < 𝑃 ↔ (2 ≤ 𝑃𝑃 ≠ 2)))
54biimprd 158 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 ≤ 𝑃𝑃 ≠ 2) → 2 < 𝑃))
65exp4b 367 . . . . . 6 (2 ∈ ℤ → (𝑃 ∈ ℤ → (2 ≤ 𝑃 → (𝑃 ≠ 2 → 2 < 𝑃))))
763imp 1195 . . . . 5 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 2 ≤ 𝑃) → (𝑃 ≠ 2 → 2 < 𝑃))
83, 7sylbi 121 . . . 4 (𝑃 ∈ (ℤ‘2) → (𝑃 ≠ 2 → 2 < 𝑃))
92, 8syl 14 . . 3 (𝑃 ∈ ℙ → (𝑃 ≠ 2 → 2 < 𝑃))
109imp 124 . 2 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → 2 < 𝑃)
111, 10sylbi 121 1 (𝑃 ∈ (ℙ ∖ {2}) → 2 < 𝑃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2167  wne 2367  cdif 3154  {csn 3623   class class class wbr 4034  cfv 5259   < clt 8066  cle 8067  2c2 9046  cz 9331  cuz 9606  cprime 12288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7975  ax-resscn 7976  ax-1cn 7977  ax-1re 7978  ax-icn 7979  ax-addcl 7980  ax-addrcl 7981  ax-mulcl 7982  ax-mulrcl 7983  ax-addcom 7984  ax-mulcom 7985  ax-addass 7986  ax-mulass 7987  ax-distr 7988  ax-i2m1 7989  ax-0lt1 7990  ax-1rid 7991  ax-0id 7992  ax-rnegex 7993  ax-precex 7994  ax-cnre 7995  ax-pre-ltirr 7996  ax-pre-ltwlin 7997  ax-pre-lttrn 7998  ax-pre-apti 7999  ax-pre-ltadd 8000  ax-pre-mulgt0 8001  ax-pre-mulext 8002  ax-arch 8003  ax-caucvg 8004
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6202  df-2nd 6203  df-recs 6367  df-frec 6453  df-1o 6478  df-2o 6479  df-er 6596  df-en 6804  df-pnf 8068  df-mnf 8069  df-xr 8070  df-ltxr 8071  df-le 8072  df-sub 8204  df-neg 8205  df-reap 8607  df-ap 8614  df-div 8705  df-inn 8996  df-2 9054  df-3 9055  df-4 9056  df-n0 9255  df-z 9332  df-uz 9607  df-q 9699  df-rp 9734  df-seqfrec 10545  df-exp 10636  df-cj 11012  df-re 11013  df-im 11014  df-rsqrt 11168  df-abs 11169  df-dvds 11958  df-prm 12289
This theorem is referenced by:  oddprmge3  12316  gausslemma2dlem4  15352  m1lgs  15373
  Copyright terms: Public domain W3C validator