ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprl GIF version

Theorem mulnqprl 7400
Description: Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
Assertion
Ref Expression
mulnqprl ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 ·P 𝐵))))

Proof of Theorem mulnqprl
Dummy variables 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 7233 . . . . . . 7 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
21adantl 275 . . . . . 6 (((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
3 simpr 109 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝑋Q)
4 prop 7307 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
5 elprnql 7313 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (1st𝐴)) → 𝐺Q)
64, 5sylan 281 . . . . . . . 8 ((𝐴P𝐺 ∈ (1st𝐴)) → 𝐺Q)
76ad2antrr 480 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝐺Q)
8 prop 7307 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 elprnql 7313 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (1st𝐵)) → 𝐻Q)
108, 9sylan 281 . . . . . . . 8 ((𝐵P𝐻 ∈ (1st𝐵)) → 𝐻Q)
1110ad2antlr 481 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝐻Q)
12 mulclnq 7208 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 ·Q 𝐻) ∈ Q)
137, 11, 12syl2anc 409 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 𝐻) ∈ Q)
14 recclnq 7224 . . . . . . 7 (𝐻Q → (*Q𝐻) ∈ Q)
1511, 14syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (*Q𝐻) ∈ Q)
16 mulcomnqg 7215 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
1716adantl 275 . . . . . 6 (((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
182, 3, 13, 15, 17caovord2d 5948 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) ↔ (𝑋 ·Q (*Q𝐻)) <Q ((𝐺 ·Q 𝐻) ·Q (*Q𝐻))))
19 mulassnqg 7216 . . . . . . . 8 ((𝐺Q𝐻Q ∧ (*Q𝐻) ∈ Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
207, 11, 15, 19syl3anc 1217 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
21 recidnq 7225 . . . . . . . . 9 (𝐻Q → (𝐻 ·Q (*Q𝐻)) = 1Q)
2221oveq2d 5798 . . . . . . . 8 (𝐻Q → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
2311, 22syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
24 mulidnq 7221 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
257, 24syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 1Q) = 𝐺)
2620, 23, 253eqtrd 2177 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = 𝐺)
2726breq2d 3949 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) <Q ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) ↔ (𝑋 ·Q (*Q𝐻)) <Q 𝐺))
2818, 27bitrd 187 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) ↔ (𝑋 ·Q (*Q𝐻)) <Q 𝐺))
29 prcdnql 7316 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (1st𝐴)) → ((𝑋 ·Q (*Q𝐻)) <Q 𝐺 → (𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴)))
304, 29sylan 281 . . . . 5 ((𝐴P𝐺 ∈ (1st𝐴)) → ((𝑋 ·Q (*Q𝐻)) <Q 𝐺 → (𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴)))
3130ad2antrr 480 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) <Q 𝐺 → (𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴)))
3228, 31sylbid 149 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → (𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴)))
33 df-imp 7301 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}⟩)
34 mulclnq 7208 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
3533, 34genpprecll 7346 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) ∧ 𝐻 ∈ (1st𝐵)) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
3635exp4b 365 . . . . . . 7 (𝐴P → (𝐵P → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → (𝐻 ∈ (1st𝐵) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))))
3736com34 83 . . . . . 6 (𝐴P → (𝐵P → (𝐻 ∈ (1st𝐵) → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))))
3837imp32 255 . . . . 5 ((𝐴P ∧ (𝐵P𝐻 ∈ (1st𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
3938adantlr 469 . . . 4 (((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
4039adantr 274 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
4132, 40syld 45 . 2 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
42 mulassnqg 7216 . . . . 5 ((𝑋Q ∧ (*Q𝐻) ∈ Q𝐻Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
433, 15, 11, 42syl3anc 1217 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
44 mulcomnqg 7215 . . . . . . 7 (((*Q𝐻) ∈ Q𝐻Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4515, 11, 44syl2anc 409 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4611, 21syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐻 ·Q (*Q𝐻)) = 1Q)
4745, 46eqtrd 2173 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = 1Q)
4847oveq2d 5798 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)) = (𝑋 ·Q 1Q))
49 mulidnq 7221 . . . . 5 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
5049adantl 275 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
5143, 48, 503eqtrd 2177 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = 𝑋)
5251eleq1d 2209 . 2 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ 𝑋 ∈ (1st ‘(𝐴 ·P 𝐵))))
5341, 52sylibd 148 1 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 ·P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1332  wcel 1481  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  Qcnq 7112  1Qc1q 7113   ·Q cmq 7115  *Qcrq 7116   <Q cltq 7117  Pcnp 7123   ·P cmp 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-lti 7139  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-imp 7301
This theorem is referenced by:  mullocprlem  7402  mulclpr  7404
  Copyright terms: Public domain W3C validator