ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprl GIF version

Theorem mulnqprl 7048
Description: Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
Assertion
Ref Expression
mulnqprl ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 ·P 𝐵))))

Proof of Theorem mulnqprl
Dummy variables 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 6881 . . . . . . 7 ((𝑦Q𝑧Q𝑤Q) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
21adantl 271 . . . . . 6 (((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q𝑤Q)) → (𝑦 <Q 𝑧 ↔ (𝑤 ·Q 𝑦) <Q (𝑤 ·Q 𝑧)))
3 simpr 108 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝑋Q)
4 prop 6955 . . . . . . . . 9 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
5 elprnql 6961 . . . . . . . . 9 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (1st𝐴)) → 𝐺Q)
64, 5sylan 277 . . . . . . . 8 ((𝐴P𝐺 ∈ (1st𝐴)) → 𝐺Q)
76ad2antrr 472 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝐺Q)
8 prop 6955 . . . . . . . . 9 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 elprnql 6961 . . . . . . . . 9 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐻 ∈ (1st𝐵)) → 𝐻Q)
108, 9sylan 277 . . . . . . . 8 ((𝐵P𝐻 ∈ (1st𝐵)) → 𝐻Q)
1110ad2antlr 473 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → 𝐻Q)
12 mulclnq 6856 . . . . . . 7 ((𝐺Q𝐻Q) → (𝐺 ·Q 𝐻) ∈ Q)
137, 11, 12syl2anc 403 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 𝐻) ∈ Q)
14 recclnq 6872 . . . . . . 7 (𝐻Q → (*Q𝐻) ∈ Q)
1511, 14syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (*Q𝐻) ∈ Q)
16 mulcomnqg 6863 . . . . . . 7 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
1716adantl 271 . . . . . 6 (((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) ∧ (𝑦Q𝑧Q)) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
182, 3, 13, 15, 17caovord2d 5752 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) ↔ (𝑋 ·Q (*Q𝐻)) <Q ((𝐺 ·Q 𝐻) ·Q (*Q𝐻))))
19 mulassnqg 6864 . . . . . . . 8 ((𝐺Q𝐻Q ∧ (*Q𝐻) ∈ Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
207, 11, 15, 19syl3anc 1172 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = (𝐺 ·Q (𝐻 ·Q (*Q𝐻))))
21 recidnq 6873 . . . . . . . . 9 (𝐻Q → (𝐻 ·Q (*Q𝐻)) = 1Q)
2221oveq2d 5610 . . . . . . . 8 (𝐻Q → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
2311, 22syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐺 ·Q (𝐻 ·Q (*Q𝐻))) = (𝐺 ·Q 1Q))
24 mulidnq 6869 . . . . . . . 8 (𝐺Q → (𝐺 ·Q 1Q) = 𝐺)
257, 24syl 14 . . . . . . 7 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐺 ·Q 1Q) = 𝐺)
2620, 23, 253eqtrd 2121 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) = 𝐺)
2726breq2d 3826 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) <Q ((𝐺 ·Q 𝐻) ·Q (*Q𝐻)) ↔ (𝑋 ·Q (*Q𝐻)) <Q 𝐺))
2818, 27bitrd 186 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) ↔ (𝑋 ·Q (*Q𝐻)) <Q 𝐺))
29 prcdnql 6964 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐺 ∈ (1st𝐴)) → ((𝑋 ·Q (*Q𝐻)) <Q 𝐺 → (𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴)))
304, 29sylan 277 . . . . 5 ((𝐴P𝐺 ∈ (1st𝐴)) → ((𝑋 ·Q (*Q𝐻)) <Q 𝐺 → (𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴)))
3130ad2antrr 472 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) <Q 𝐺 → (𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴)))
3228, 31sylbid 148 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → (𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴)))
33 df-imp 6949 . . . . . . . . 9 ·P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 ·Q 𝑧))}⟩)
34 mulclnq 6856 . . . . . . . . 9 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) ∈ Q)
3533, 34genpprecll 6994 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) ∧ 𝐻 ∈ (1st𝐵)) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
3635exp4b 359 . . . . . . 7 (𝐴P → (𝐵P → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → (𝐻 ∈ (1st𝐵) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))))
3736com34 82 . . . . . 6 (𝐴P → (𝐵P → (𝐻 ∈ (1st𝐵) → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))))
3837imp32 253 . . . . 5 ((𝐴P ∧ (𝐵P𝐻 ∈ (1st𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
3938adantlr 461 . . . 4 (((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
4039adantr 270 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ∈ (1st𝐴) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
4132, 40syld 44 . 2 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵))))
42 mulassnqg 6864 . . . . 5 ((𝑋Q ∧ (*Q𝐻) ∈ Q𝐻Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
433, 15, 11, 42syl3anc 1172 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)))
44 mulcomnqg 6863 . . . . . . 7 (((*Q𝐻) ∈ Q𝐻Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4515, 11, 44syl2anc 403 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = (𝐻 ·Q (*Q𝐻)))
4611, 21syl 14 . . . . . 6 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝐻 ·Q (*Q𝐻)) = 1Q)
4745, 46eqtrd 2117 . . . . 5 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((*Q𝐻) ·Q 𝐻) = 1Q)
4847oveq2d 5610 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q ((*Q𝐻) ·Q 𝐻)) = (𝑋 ·Q 1Q))
49 mulidnq 6869 . . . . 5 (𝑋Q → (𝑋 ·Q 1Q) = 𝑋)
5049adantl 271 . . . 4 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 ·Q 1Q) = 𝑋)
5143, 48, 503eqtrd 2121 . . 3 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → ((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) = 𝑋)
5251eleq1d 2153 . 2 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (((𝑋 ·Q (*Q𝐻)) ·Q 𝐻) ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ 𝑋 ∈ (1st ‘(𝐴 ·P 𝐵))))
5341, 52sylibd 147 1 ((((𝐴P𝐺 ∈ (1st𝐴)) ∧ (𝐵P𝐻 ∈ (1st𝐵))) ∧ 𝑋Q) → (𝑋 <Q (𝐺 ·Q 𝐻) → 𝑋 ∈ (1st ‘(𝐴 ·P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 922   = wceq 1287  wcel 1436  cop 3428   class class class wbr 3814  cfv 4972  (class class class)co 5594  1st c1st 5847  2nd c2nd 5848  Qcnq 6760  1Qc1q 6761   ·Q cmq 6763  *Qcrq 6764   <Q cltq 6765  Pcnp 6771   ·P cmp 6774
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3922  ax-sep 3925  ax-nul 3933  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-iinf 4369
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-tr 3905  df-eprel 4083  df-id 4087  df-iord 4160  df-on 4162  df-suc 4165  df-iom 4372  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-f1 4977  df-fo 4978  df-f1o 4979  df-fv 4980  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-1st 5849  df-2nd 5850  df-recs 6005  df-irdg 6070  df-1o 6116  df-oadd 6120  df-omul 6121  df-er 6225  df-ec 6227  df-qs 6231  df-ni 6784  df-mi 6786  df-lti 6787  df-mpq 6825  df-enq 6827  df-nqqs 6828  df-mqqs 6830  df-1nqqs 6831  df-rq 6832  df-ltnqqs 6833  df-inp 6946  df-imp 6949
This theorem is referenced by:  mullocprlem  7050  mulclpr  7052
  Copyright terms: Public domain W3C validator