ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemss1l GIF version

Theorem recexprlemss1l 7697
Description: The lower cut of 𝐴 ·P 𝐵 is a subset of the lower cut of one. Lemma for recexpr 7700. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemss1l (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemss1l
Dummy variables 𝑞 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlempr 7694 . . . . 5 (𝐴P𝐵P)
3 df-imp 7531 . . . . . 6 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
4 mulclnq 7438 . . . . . 6 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelvl 7574 . . . . 5 ((𝐴P𝐵P) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞)))
62, 5mpdan 421 . . . 4 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞)))
71recexprlemell 7684 . . . . . . . 8 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
8 ltrelnq 7427 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
98brel 4712 . . . . . . . . . . . . 13 (𝑞 <Q 𝑦 → (𝑞Q𝑦Q))
109simprd 114 . . . . . . . . . . . 12 (𝑞 <Q 𝑦𝑦Q)
11 prop 7537 . . . . . . . . . . . . . . . . . 18 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 elprnql 7543 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
1311, 12sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (1st𝐴)) → 𝑧Q)
14 ltmnqi 7465 . . . . . . . . . . . . . . . . . 18 ((𝑞 <Q 𝑦𝑧Q) → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦))
1514expcom 116 . . . . . . . . . . . . . . . . 17 (𝑧Q → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
1613, 15syl 14 . . . . . . . . . . . . . . . 16 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
1716adantr 276 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
18 prltlu 7549 . . . . . . . . . . . . . . . . . . 19 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑧 <Q (*Q𝑦))
1911, 18syl3an1 1282 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧 ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑧 <Q (*Q𝑦))
20193expia 1207 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (1st𝐴)) → ((*Q𝑦) ∈ (2nd𝐴) → 𝑧 <Q (*Q𝑦)))
2120adantr 276 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (2nd𝐴) → 𝑧 <Q (*Q𝑦)))
22 ltmnqi 7465 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 <Q (*Q𝑦) ∧ 𝑦Q) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)))
2322expcom 116 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑧 <Q (*Q𝑦) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
2423adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → (𝑧 <Q (*Q𝑦) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
25 mulcomnqg 7445 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
26 recidnq 7455 . . . . . . . . . . . . . . . . . . . . 21 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2726adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q (*Q𝑦)) = 1Q)
2825, 27breq12d 4043 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2924, 28sylibd 149 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑧Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3029ancoms 268 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑦Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3113, 30sylan 283 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3221, 31syld 45 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑦) <Q 1Q))
3317, 32anim12d 335 . . . . . . . . . . . . . 14 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ((𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q)))
34 ltsonq 7460 . . . . . . . . . . . . . . 15 <Q Or Q
3534, 8sotri 5062 . . . . . . . . . . . . . 14 (((𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q) → (𝑧 ·Q 𝑞) <Q 1Q)
3633, 35syl6 33 . . . . . . . . . . . . 13 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
3736exp4b 367 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑦Q → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q))))
3810, 37syl5 32 . . . . . . . . . . 11 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q))))
3938pm2.43d 50 . . . . . . . . . 10 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q)))
4039impd 254 . . . . . . . . 9 ((𝐴P𝑧 ∈ (1st𝐴)) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
4140exlimdv 1830 . . . . . . . 8 ((𝐴P𝑧 ∈ (1st𝐴)) → (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
427, 41biimtrid 152 . . . . . . 7 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) → (𝑧 ·Q 𝑞) <Q 1Q))
43 breq1 4033 . . . . . . . 8 (𝑤 = (𝑧 ·Q 𝑞) → (𝑤 <Q 1Q ↔ (𝑧 ·Q 𝑞) <Q 1Q))
4443biimprcd 160 . . . . . . 7 ((𝑧 ·Q 𝑞) <Q 1Q → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q))
4542, 44syl6 33 . . . . . 6 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q)))
4645expimpd 363 . . . . 5 (𝐴P → ((𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (1st𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q)))
4746rexlimdvv 2618 . . . 4 (𝐴P → (∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q))
486, 47sylbid 150 . . 3 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) → 𝑤 <Q 1Q))
49 1prl 7617 . . . 4 (1st ‘1P) = {𝑤𝑤 <Q 1Q}
5049abeq2i 2304 . . 3 (𝑤 ∈ (1st ‘1P) ↔ 𝑤 <Q 1Q)
5148, 50imbitrrdi 162 . 2 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) → 𝑤 ∈ (1st ‘1P)))
5251ssrdv 3186 1 (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wrex 2473  wss 3154  cop 3622   class class class wbr 4030  cfv 5255  (class class class)co 5919  1st c1st 6193  2nd c2nd 6194  Qcnq 7342  1Qc1q 7343   ·Q cmq 7345  *Qcrq 7346   <Q cltq 7347  Pcnp 7353  1Pc1p 7354   ·P cmp 7356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-inp 7528  df-i1p 7529  df-imp 7531
This theorem is referenced by:  recexprlemex  7699
  Copyright terms: Public domain W3C validator