ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemss1l GIF version

Theorem recexprlemss1l 7702
Description: The lower cut of 𝐴 ·P 𝐵 is a subset of the lower cut of one. Lemma for recexpr 7705. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemss1l (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemss1l
Dummy variables 𝑞 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlempr 7699 . . . . 5 (𝐴P𝐵P)
3 df-imp 7536 . . . . . 6 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
4 mulclnq 7443 . . . . . 6 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelvl 7579 . . . . 5 ((𝐴P𝐵P) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞)))
62, 5mpdan 421 . . . 4 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞)))
71recexprlemell 7689 . . . . . . . 8 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
8 ltrelnq 7432 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
98brel 4715 . . . . . . . . . . . . 13 (𝑞 <Q 𝑦 → (𝑞Q𝑦Q))
109simprd 114 . . . . . . . . . . . 12 (𝑞 <Q 𝑦𝑦Q)
11 prop 7542 . . . . . . . . . . . . . . . . . 18 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 elprnql 7548 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
1311, 12sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (1st𝐴)) → 𝑧Q)
14 ltmnqi 7470 . . . . . . . . . . . . . . . . . 18 ((𝑞 <Q 𝑦𝑧Q) → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦))
1514expcom 116 . . . . . . . . . . . . . . . . 17 (𝑧Q → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
1613, 15syl 14 . . . . . . . . . . . . . . . 16 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
1716adantr 276 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
18 prltlu 7554 . . . . . . . . . . . . . . . . . . 19 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑧 <Q (*Q𝑦))
1911, 18syl3an1 1282 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧 ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑧 <Q (*Q𝑦))
20193expia 1207 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (1st𝐴)) → ((*Q𝑦) ∈ (2nd𝐴) → 𝑧 <Q (*Q𝑦)))
2120adantr 276 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (2nd𝐴) → 𝑧 <Q (*Q𝑦)))
22 ltmnqi 7470 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 <Q (*Q𝑦) ∧ 𝑦Q) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)))
2322expcom 116 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑧 <Q (*Q𝑦) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
2423adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → (𝑧 <Q (*Q𝑦) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
25 mulcomnqg 7450 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
26 recidnq 7460 . . . . . . . . . . . . . . . . . . . . 21 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2726adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q (*Q𝑦)) = 1Q)
2825, 27breq12d 4046 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2924, 28sylibd 149 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑧Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3029ancoms 268 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑦Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3113, 30sylan 283 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3221, 31syld 45 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑦) <Q 1Q))
3317, 32anim12d 335 . . . . . . . . . . . . . 14 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ((𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q)))
34 ltsonq 7465 . . . . . . . . . . . . . . 15 <Q Or Q
3534, 8sotri 5065 . . . . . . . . . . . . . 14 (((𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q) → (𝑧 ·Q 𝑞) <Q 1Q)
3633, 35syl6 33 . . . . . . . . . . . . 13 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
3736exp4b 367 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑦Q → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q))))
3810, 37syl5 32 . . . . . . . . . . 11 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q))))
3938pm2.43d 50 . . . . . . . . . 10 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q)))
4039impd 254 . . . . . . . . 9 ((𝐴P𝑧 ∈ (1st𝐴)) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
4140exlimdv 1833 . . . . . . . 8 ((𝐴P𝑧 ∈ (1st𝐴)) → (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
427, 41biimtrid 152 . . . . . . 7 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) → (𝑧 ·Q 𝑞) <Q 1Q))
43 breq1 4036 . . . . . . . 8 (𝑤 = (𝑧 ·Q 𝑞) → (𝑤 <Q 1Q ↔ (𝑧 ·Q 𝑞) <Q 1Q))
4443biimprcd 160 . . . . . . 7 ((𝑧 ·Q 𝑞) <Q 1Q → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q))
4542, 44syl6 33 . . . . . 6 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q)))
4645expimpd 363 . . . . 5 (𝐴P → ((𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (1st𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q)))
4746rexlimdvv 2621 . . . 4 (𝐴P → (∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q))
486, 47sylbid 150 . . 3 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) → 𝑤 <Q 1Q))
49 1prl 7622 . . . 4 (1st ‘1P) = {𝑤𝑤 <Q 1Q}
5049abeq2i 2307 . . 3 (𝑤 ∈ (1st ‘1P) ↔ 𝑤 <Q 1Q)
5148, 50imbitrrdi 162 . 2 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) → 𝑤 ∈ (1st ‘1P)))
5251ssrdv 3189 1 (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1506  wcel 2167  {cab 2182  wrex 2476  wss 3157  cop 3625   class class class wbr 4033  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Qcnq 7347  1Qc1q 7348   ·Q cmq 7350  *Qcrq 7351   <Q cltq 7352  Pcnp 7358  1Pc1p 7359   ·P cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533  df-i1p 7534  df-imp 7536
This theorem is referenced by:  recexprlemex  7704
  Copyright terms: Public domain W3C validator