| Step | Hyp | Ref
 | Expression | 
| 1 |   | recexpr.1 | 
. . . . . 6
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 | 
| 2 | 1 | recexprlempr 7699 | 
. . . . 5
⊢ (𝐴 ∈ P →
𝐵 ∈
P) | 
| 3 |   | df-imp 7536 | 
. . . . . 6
⊢ 
·P = (𝑦 ∈ P, 𝑤 ∈ P ↦ 〈{𝑢 ∈ Q ∣
∃𝑓 ∈
Q ∃𝑔
∈ Q (𝑓
∈ (1st ‘𝑦) ∧ 𝑔 ∈ (1st ‘𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢 ∈ Q ∣ ∃𝑓 ∈ Q
∃𝑔 ∈
Q (𝑓 ∈
(2nd ‘𝑦)
∧ 𝑔 ∈
(2nd ‘𝑤)
∧ 𝑢 = (𝑓
·Q 𝑔))}〉) | 
| 4 |   | mulclnq 7443 | 
. . . . . 6
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
·Q 𝑔) ∈ Q) | 
| 5 | 3, 4 | genpelvl 7579 | 
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑤 ∈
(1st ‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑞 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑞))) | 
| 6 | 2, 5 | mpdan 421 | 
. . . 4
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑞 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑞))) | 
| 7 | 1 | recexprlemell 7689 | 
. . . . . . . 8
⊢ (𝑞 ∈ (1st
‘𝐵) ↔
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) | 
| 8 |   | ltrelnq 7432 | 
. . . . . . . . . . . . . 14
⊢ 
<Q ⊆ (Q ×
Q) | 
| 9 | 8 | brel 4715 | 
. . . . . . . . . . . . 13
⊢ (𝑞 <Q
𝑦 → (𝑞 ∈ Q ∧
𝑦 ∈
Q)) | 
| 10 | 9 | simprd 114 | 
. . . . . . . . . . . 12
⊢ (𝑞 <Q
𝑦 → 𝑦 ∈ Q) | 
| 11 |   | prop 7542 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 12 |   | elprnql 7548 | 
. . . . . . . . . . . . . . . . . 18
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐴)) → 𝑧 ∈
Q) | 
| 13 | 11, 12 | sylan 283 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → 𝑧 ∈
Q) | 
| 14 |   | ltmnqi 7470 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 <Q
𝑦 ∧ 𝑧 ∈ Q) → (𝑧
·Q 𝑞) <Q (𝑧
·Q 𝑦)) | 
| 15 | 14 | expcom 116 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ Q →
(𝑞
<Q 𝑦 → (𝑧 ·Q 𝑞) <Q
(𝑧
·Q 𝑦))) | 
| 16 | 13, 15 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 <Q
𝑦 → (𝑧
·Q 𝑞) <Q (𝑧
·Q 𝑦))) | 
| 17 | 16 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
(𝑞
<Q 𝑦 → (𝑧 ·Q 𝑞) <Q
(𝑧
·Q 𝑦))) | 
| 18 |   | prltlu 7554 | 
. . . . . . . . . . . . . . . . . . 19
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐴) ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑧 <Q
(*Q‘𝑦)) | 
| 19 | 11, 18 | syl3an1 1282 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴) ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑧 <Q
(*Q‘𝑦)) | 
| 20 | 19 | 3expia 1207 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → 𝑧 <Q
(*Q‘𝑦))) | 
| 21 | 20 | adantr 276 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → 𝑧 <Q
(*Q‘𝑦))) | 
| 22 |   | ltmnqi 7470 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 <Q
(*Q‘𝑦) ∧ 𝑦 ∈ Q) → (𝑦
·Q 𝑧) <Q (𝑦
·Q (*Q‘𝑦))) | 
| 23 | 22 | expcom 116 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ Q →
(𝑧
<Q (*Q‘𝑦) → (𝑦 ·Q 𝑧) <Q
(𝑦
·Q (*Q‘𝑦)))) | 
| 24 | 23 | adantr 276 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑧
<Q (*Q‘𝑦) → (𝑦 ·Q 𝑧) <Q
(𝑦
·Q (*Q‘𝑦)))) | 
| 25 |   | mulcomnqg 7450 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦
·Q 𝑧) = (𝑧 ·Q 𝑦)) | 
| 26 |   | recidnq 7460 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ Q →
(𝑦
·Q (*Q‘𝑦)) =
1Q) | 
| 27 | 26 | adantr 276 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦
·Q (*Q‘𝑦)) =
1Q) | 
| 28 | 25, 27 | breq12d 4046 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ ((𝑦
·Q 𝑧) <Q (𝑦
·Q (*Q‘𝑦)) ↔ (𝑧 ·Q 𝑦) <Q
1Q)) | 
| 29 | 24, 28 | sylibd 149 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑧
<Q (*Q‘𝑦) → (𝑧 ·Q 𝑦) <Q
1Q)) | 
| 30 | 29 | ancoms 268 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑧
<Q (*Q‘𝑦) → (𝑧 ·Q 𝑦) <Q
1Q)) | 
| 31 | 13, 30 | sylan 283 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
(𝑧
<Q (*Q‘𝑦) → (𝑧 ·Q 𝑦) <Q
1Q)) | 
| 32 | 21, 31 | syld 45 | 
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → (𝑧 ·Q 𝑦) <Q
1Q)) | 
| 33 | 17, 32 | anim12d 335 | 
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → ((𝑧 ·Q 𝑞) <Q
(𝑧
·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q
1Q))) | 
| 34 |   | ltsonq 7465 | 
. . . . . . . . . . . . . . 15
⊢ 
<Q Or Q | 
| 35 | 34, 8 | sotri 5065 | 
. . . . . . . . . . . . . 14
⊢ (((𝑧
·Q 𝑞) <Q (𝑧
·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q
1Q) → (𝑧 ·Q 𝑞) <Q
1Q) | 
| 36 | 33, 35 | syl6 33 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑧 ·Q 𝑞) <Q
1Q)) | 
| 37 | 36 | exp4b 367 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑦 ∈ Q →
(𝑞
<Q 𝑦 →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → (𝑧 ·Q 𝑞) <Q
1Q)))) | 
| 38 | 10, 37 | syl5 32 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 <Q
𝑦 → (𝑞 <Q
𝑦 →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → (𝑧 ·Q 𝑞) <Q
1Q)))) | 
| 39 | 38 | pm2.43d 50 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 <Q
𝑦 →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → (𝑧 ·Q 𝑞) <Q
1Q))) | 
| 40 | 39 | impd 254 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → ((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑧 ·Q 𝑞) <Q
1Q)) | 
| 41 | 40 | exlimdv 1833 | 
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) →
(∃𝑦(𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑧 ·Q 𝑞) <Q
1Q)) | 
| 42 | 7, 41 | biimtrid 152 | 
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 ∈ (1st
‘𝐵) → (𝑧
·Q 𝑞) <Q
1Q)) | 
| 43 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑤 = (𝑧 ·Q 𝑞) → (𝑤 <Q
1Q ↔ (𝑧 ·Q 𝑞) <Q
1Q)) | 
| 44 | 43 | biimprcd 160 | 
. . . . . . 7
⊢ ((𝑧
·Q 𝑞) <Q
1Q → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q
1Q)) | 
| 45 | 42, 44 | syl6 33 | 
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 ∈ (1st
‘𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q
1Q))) | 
| 46 | 45 | expimpd 363 | 
. . . . 5
⊢ (𝐴 ∈ P →
((𝑧 ∈ (1st
‘𝐴) ∧ 𝑞 ∈ (1st
‘𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q
1Q))) | 
| 47 | 46 | rexlimdvv 2621 | 
. . . 4
⊢ (𝐴 ∈ P →
(∃𝑧 ∈
(1st ‘𝐴)∃𝑞 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q
1Q)) | 
| 48 | 6, 47 | sylbid 150 | 
. . 3
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) → 𝑤 <Q
1Q)) | 
| 49 |   | 1prl 7622 | 
. . . 4
⊢
(1st ‘1P) = {𝑤 ∣ 𝑤 <Q
1Q} | 
| 50 | 49 | abeq2i 2307 | 
. . 3
⊢ (𝑤 ∈ (1st
‘1P) ↔ 𝑤 <Q
1Q) | 
| 51 | 48, 50 | imbitrrdi 162 | 
. 2
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) → 𝑤 ∈ (1st
‘1P))) | 
| 52 | 51 | ssrdv 3189 | 
1
⊢ (𝐴 ∈ P →
(1st ‘(𝐴
·P 𝐵)) ⊆ (1st
‘1P)) |