| Step | Hyp | Ref
| Expression |
| 1 | | recexpr.1 |
. . . . . 6
⊢ 𝐵 = 〈{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧
(*Q‘𝑦) ∈ (1st ‘𝐴))}〉 |
| 2 | 1 | recexprlempr 7716 |
. . . . 5
⊢ (𝐴 ∈ P →
𝐵 ∈
P) |
| 3 | | df-imp 7553 |
. . . . . 6
⊢
·P = (𝑦 ∈ P, 𝑤 ∈ P ↦ 〈{𝑢 ∈ Q ∣
∃𝑓 ∈
Q ∃𝑔
∈ Q (𝑓
∈ (1st ‘𝑦) ∧ 𝑔 ∈ (1st ‘𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢 ∈ Q ∣ ∃𝑓 ∈ Q
∃𝑔 ∈
Q (𝑓 ∈
(2nd ‘𝑦)
∧ 𝑔 ∈
(2nd ‘𝑤)
∧ 𝑢 = (𝑓
·Q 𝑔))}〉) |
| 4 | | mulclnq 7460 |
. . . . . 6
⊢ ((𝑓 ∈ Q ∧
𝑔 ∈ Q)
→ (𝑓
·Q 𝑔) ∈ Q) |
| 5 | 3, 4 | genpelvl 7596 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑤 ∈
(1st ‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑞 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑞))) |
| 6 | 2, 5 | mpdan 421 |
. . . 4
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) ↔ ∃𝑧 ∈ (1st ‘𝐴)∃𝑞 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑞))) |
| 7 | 1 | recexprlemell 7706 |
. . . . . . . 8
⊢ (𝑞 ∈ (1st
‘𝐵) ↔
∃𝑦(𝑞 <Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴))) |
| 8 | | ltrelnq 7449 |
. . . . . . . . . . . . . 14
⊢
<Q ⊆ (Q ×
Q) |
| 9 | 8 | brel 4716 |
. . . . . . . . . . . . 13
⊢ (𝑞 <Q
𝑦 → (𝑞 ∈ Q ∧
𝑦 ∈
Q)) |
| 10 | 9 | simprd 114 |
. . . . . . . . . . . 12
⊢ (𝑞 <Q
𝑦 → 𝑦 ∈ Q) |
| 11 | | prop 7559 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
| 12 | | elprnql 7565 |
. . . . . . . . . . . . . . . . . 18
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐴)) → 𝑧 ∈
Q) |
| 13 | 11, 12 | sylan 283 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → 𝑧 ∈
Q) |
| 14 | | ltmnqi 7487 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑞 <Q
𝑦 ∧ 𝑧 ∈ Q) → (𝑧
·Q 𝑞) <Q (𝑧
·Q 𝑦)) |
| 15 | 14 | expcom 116 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ Q →
(𝑞
<Q 𝑦 → (𝑧 ·Q 𝑞) <Q
(𝑧
·Q 𝑦))) |
| 16 | 13, 15 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 <Q
𝑦 → (𝑧
·Q 𝑞) <Q (𝑧
·Q 𝑦))) |
| 17 | 16 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
(𝑞
<Q 𝑦 → (𝑧 ·Q 𝑞) <Q
(𝑧
·Q 𝑦))) |
| 18 | | prltlu 7571 |
. . . . . . . . . . . . . . . . . . 19
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑧 ∈ (1st
‘𝐴) ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑧 <Q
(*Q‘𝑦)) |
| 19 | 11, 18 | syl3an1 1282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴) ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → 𝑧 <Q
(*Q‘𝑦)) |
| 20 | 19 | 3expia 1207 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → 𝑧 <Q
(*Q‘𝑦))) |
| 21 | 20 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → 𝑧 <Q
(*Q‘𝑦))) |
| 22 | | ltmnqi 7487 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 <Q
(*Q‘𝑦) ∧ 𝑦 ∈ Q) → (𝑦
·Q 𝑧) <Q (𝑦
·Q (*Q‘𝑦))) |
| 23 | 22 | expcom 116 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ Q →
(𝑧
<Q (*Q‘𝑦) → (𝑦 ·Q 𝑧) <Q
(𝑦
·Q (*Q‘𝑦)))) |
| 24 | 23 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑧
<Q (*Q‘𝑦) → (𝑦 ·Q 𝑧) <Q
(𝑦
·Q (*Q‘𝑦)))) |
| 25 | | mulcomnqg 7467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦
·Q 𝑧) = (𝑧 ·Q 𝑦)) |
| 26 | | recidnq 7477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ Q →
(𝑦
·Q (*Q‘𝑦)) =
1Q) |
| 27 | 26 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦
·Q (*Q‘𝑦)) =
1Q) |
| 28 | 25, 27 | breq12d 4047 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ ((𝑦
·Q 𝑧) <Q (𝑦
·Q (*Q‘𝑦)) ↔ (𝑧 ·Q 𝑦) <Q
1Q)) |
| 29 | 24, 28 | sylibd 149 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑧
<Q (*Q‘𝑦) → (𝑧 ·Q 𝑦) <Q
1Q)) |
| 30 | 29 | ancoms 268 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑧 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑧
<Q (*Q‘𝑦) → (𝑧 ·Q 𝑦) <Q
1Q)) |
| 31 | 13, 30 | sylan 283 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
(𝑧
<Q (*Q‘𝑦) → (𝑧 ·Q 𝑦) <Q
1Q)) |
| 32 | 21, 31 | syld 45 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → (𝑧 ·Q 𝑦) <Q
1Q)) |
| 33 | 17, 32 | anim12d 335 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → ((𝑧 ·Q 𝑞) <Q
(𝑧
·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q
1Q))) |
| 34 | | ltsonq 7482 |
. . . . . . . . . . . . . . 15
⊢
<Q Or Q |
| 35 | 34, 8 | sotri 5066 |
. . . . . . . . . . . . . 14
⊢ (((𝑧
·Q 𝑞) <Q (𝑧
·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q
1Q) → (𝑧 ·Q 𝑞) <Q
1Q) |
| 36 | 33, 35 | syl6 33 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) ∧ 𝑦 ∈ Q) →
((𝑞
<Q 𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑧 ·Q 𝑞) <Q
1Q)) |
| 37 | 36 | exp4b 367 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑦 ∈ Q →
(𝑞
<Q 𝑦 →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → (𝑧 ·Q 𝑞) <Q
1Q)))) |
| 38 | 10, 37 | syl5 32 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 <Q
𝑦 → (𝑞 <Q
𝑦 →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → (𝑧 ·Q 𝑞) <Q
1Q)))) |
| 39 | 38 | pm2.43d 50 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 <Q
𝑦 →
((*Q‘𝑦) ∈ (2nd ‘𝐴) → (𝑧 ·Q 𝑞) <Q
1Q))) |
| 40 | 39 | impd 254 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → ((𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑧 ·Q 𝑞) <Q
1Q)) |
| 41 | 40 | exlimdv 1833 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) →
(∃𝑦(𝑞 <Q
𝑦 ∧
(*Q‘𝑦) ∈ (2nd ‘𝐴)) → (𝑧 ·Q 𝑞) <Q
1Q)) |
| 42 | 7, 41 | biimtrid 152 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 ∈ (1st
‘𝐵) → (𝑧
·Q 𝑞) <Q
1Q)) |
| 43 | | breq1 4037 |
. . . . . . . 8
⊢ (𝑤 = (𝑧 ·Q 𝑞) → (𝑤 <Q
1Q ↔ (𝑧 ·Q 𝑞) <Q
1Q)) |
| 44 | 43 | biimprcd 160 |
. . . . . . 7
⊢ ((𝑧
·Q 𝑞) <Q
1Q → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q
1Q)) |
| 45 | 42, 44 | syl6 33 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝑧 ∈ (1st
‘𝐴)) → (𝑞 ∈ (1st
‘𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q
1Q))) |
| 46 | 45 | expimpd 363 |
. . . . 5
⊢ (𝐴 ∈ P →
((𝑧 ∈ (1st
‘𝐴) ∧ 𝑞 ∈ (1st
‘𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q
1Q))) |
| 47 | 46 | rexlimdvv 2621 |
. . . 4
⊢ (𝐴 ∈ P →
(∃𝑧 ∈
(1st ‘𝐴)∃𝑞 ∈ (1st ‘𝐵)𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q
1Q)) |
| 48 | 6, 47 | sylbid 150 |
. . 3
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) → 𝑤 <Q
1Q)) |
| 49 | | 1prl 7639 |
. . . 4
⊢
(1st ‘1P) = {𝑤 ∣ 𝑤 <Q
1Q} |
| 50 | 49 | abeq2i 2307 |
. . 3
⊢ (𝑤 ∈ (1st
‘1P) ↔ 𝑤 <Q
1Q) |
| 51 | 48, 50 | imbitrrdi 162 |
. 2
⊢ (𝐴 ∈ P →
(𝑤 ∈ (1st
‘(𝐴
·P 𝐵)) → 𝑤 ∈ (1st
‘1P))) |
| 52 | 51 | ssrdv 3190 |
1
⊢ (𝐴 ∈ P →
(1st ‘(𝐴
·P 𝐵)) ⊆ (1st
‘1P)) |