ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemss1l GIF version

Theorem recexprlemss1l 7095
Description: The lower cut of 𝐴 ·P 𝐵 is a subset of the lower cut of one. Lemma for recexpr 7098. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemss1l (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemss1l
Dummy variables 𝑞 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlempr 7092 . . . . 5 (𝐴P𝐵P)
3 df-imp 6929 . . . . . 6 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
4 mulclnq 6836 . . . . . 6 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelvl 6972 . . . . 5 ((𝐴P𝐵P) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞)))
62, 5mpdan 412 . . . 4 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞)))
71recexprlemell 7082 . . . . . . . 8 (𝑞 ∈ (1st𝐵) ↔ ∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
8 ltrelnq 6825 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
98brel 4446 . . . . . . . . . . . . 13 (𝑞 <Q 𝑦 → (𝑞Q𝑦Q))
109simprd 112 . . . . . . . . . . . 12 (𝑞 <Q 𝑦𝑦Q)
11 prop 6935 . . . . . . . . . . . . . . . . . 18 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 elprnql 6941 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴)) → 𝑧Q)
1311, 12sylan 277 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (1st𝐴)) → 𝑧Q)
14 ltmnqi 6863 . . . . . . . . . . . . . . . . . 18 ((𝑞 <Q 𝑦𝑧Q) → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦))
1514expcom 114 . . . . . . . . . . . . . . . . 17 (𝑧Q → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
1613, 15syl 14 . . . . . . . . . . . . . . . 16 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
1716adantr 270 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → (𝑞 <Q 𝑦 → (𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦)))
18 prltlu 6947 . . . . . . . . . . . . . . . . . . 19 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑧 <Q (*Q𝑦))
1911, 18syl3an1 1203 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧 ∈ (1st𝐴) ∧ (*Q𝑦) ∈ (2nd𝐴)) → 𝑧 <Q (*Q𝑦))
20193expia 1141 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (1st𝐴)) → ((*Q𝑦) ∈ (2nd𝐴) → 𝑧 <Q (*Q𝑦)))
2120adantr 270 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (2nd𝐴) → 𝑧 <Q (*Q𝑦)))
22 ltmnqi 6863 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 <Q (*Q𝑦) ∧ 𝑦Q) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)))
2322expcom 114 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → (𝑧 <Q (*Q𝑦) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
2423adantr 270 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → (𝑧 <Q (*Q𝑦) → (𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦))))
25 mulcomnqg 6843 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
26 recidnq 6853 . . . . . . . . . . . . . . . . . . . . 21 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2726adantr 270 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q (*Q𝑦)) = 1Q)
2825, 27breq12d 3824 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((𝑦 ·Q 𝑧) <Q (𝑦 ·Q (*Q𝑦)) ↔ (𝑧 ·Q 𝑦) <Q 1Q))
2924, 28sylibd 147 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑧Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3029ancoms 264 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑦Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3113, 30sylan 277 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → (𝑧 <Q (*Q𝑦) → (𝑧 ·Q 𝑦) <Q 1Q))
3221, 31syld 44 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑦) <Q 1Q))
3317, 32anim12d 328 . . . . . . . . . . . . . 14 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → ((𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q)))
34 ltsonq 6858 . . . . . . . . . . . . . . 15 <Q Or Q
3534, 8sotri 4780 . . . . . . . . . . . . . 14 (((𝑧 ·Q 𝑞) <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q 1Q) → (𝑧 ·Q 𝑞) <Q 1Q)
3633, 35syl6 33 . . . . . . . . . . . . 13 (((𝐴P𝑧 ∈ (1st𝐴)) ∧ 𝑦Q) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
3736exp4b 359 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑦Q → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q))))
3810, 37syl5 32 . . . . . . . . . . 11 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q))))
3938pm2.43d 49 . . . . . . . . . 10 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 <Q 𝑦 → ((*Q𝑦) ∈ (2nd𝐴) → (𝑧 ·Q 𝑞) <Q 1Q)))
4039impd 251 . . . . . . . . 9 ((𝐴P𝑧 ∈ (1st𝐴)) → ((𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
4140exlimdv 1742 . . . . . . . 8 ((𝐴P𝑧 ∈ (1st𝐴)) → (∃𝑦(𝑞 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) → (𝑧 ·Q 𝑞) <Q 1Q))
427, 41syl5bi 150 . . . . . . 7 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) → (𝑧 ·Q 𝑞) <Q 1Q))
43 breq1 3814 . . . . . . . 8 (𝑤 = (𝑧 ·Q 𝑞) → (𝑤 <Q 1Q ↔ (𝑧 ·Q 𝑞) <Q 1Q))
4443biimprcd 158 . . . . . . 7 ((𝑧 ·Q 𝑞) <Q 1Q → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q))
4542, 44syl6 33 . . . . . 6 ((𝐴P𝑧 ∈ (1st𝐴)) → (𝑞 ∈ (1st𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q)))
4645expimpd 355 . . . . 5 (𝐴P → ((𝑧 ∈ (1st𝐴) ∧ 𝑞 ∈ (1st𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q)))
4746rexlimdvv 2489 . . . 4 (𝐴P → (∃𝑧 ∈ (1st𝐴)∃𝑞 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑞) → 𝑤 <Q 1Q))
486, 47sylbid 148 . . 3 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) → 𝑤 <Q 1Q))
49 1prl 7015 . . . 4 (1st ‘1P) = {𝑤𝑤 <Q 1Q}
5049abeq2i 2193 . . 3 (𝑤 ∈ (1st ‘1P) ↔ 𝑤 <Q 1Q)
5148, 50syl6ibr 160 . 2 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) → 𝑤 ∈ (1st ‘1P)))
5251ssrdv 3016 1 (𝐴P → (1st ‘(𝐴 ·P 𝐵)) ⊆ (1st ‘1P))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  {cab 2069  wrex 2354  wss 2984  cop 3425   class class class wbr 3811  cfv 4967  (class class class)co 5589  1st c1st 5842  2nd c2nd 5843  Qcnq 6740  1Qc1q 6741   ·Q cmq 6743  *Qcrq 6744   <Q cltq 6745  Pcnp 6751  1Pc1p 6752   ·P cmp 6754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4079  df-id 4083  df-po 4086  df-iso 4087  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-irdg 6065  df-1o 6111  df-oadd 6115  df-omul 6116  df-er 6220  df-ec 6222  df-qs 6226  df-ni 6764  df-pli 6765  df-mi 6766  df-lti 6767  df-plpq 6804  df-mpq 6805  df-enq 6807  df-nqqs 6808  df-plqqs 6809  df-mqqs 6810  df-1nqqs 6811  df-rq 6812  df-ltnqqs 6813  df-inp 6926  df-i1p 6927  df-imp 6929
This theorem is referenced by:  recexprlemex  7097
  Copyright terms: Public domain W3C validator