ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemss1u GIF version

Theorem recexprlemss1u 7577
Description: The upper cut of 𝐴 ·P 𝐵 is a subset of the upper cut of one. Lemma for recexpr 7579. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemss1u (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemss1u
Dummy variables 𝑞 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlempr 7573 . . . . 5 (𝐴P𝐵P)
3 df-imp 7410 . . . . . 6 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
4 mulclnq 7317 . . . . . 6 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelvu 7454 . . . . 5 ((𝐴P𝐵P) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞)))
62, 5mpdan 418 . . . 4 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞)))
71recexprlemelu 7564 . . . . . . . 8 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
8 ltrelnq 7306 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
98brel 4656 . . . . . . . . . . . . 13 (𝑦 <Q 𝑞 → (𝑦Q𝑞Q))
109simpld 111 . . . . . . . . . . . 12 (𝑦 <Q 𝑞𝑦Q)
11 prop 7416 . . . . . . . . . . . . . . . . . 18 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 elprnqu 7423 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
1311, 12sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
14 ltmnqi 7344 . . . . . . . . . . . . . . . . . 18 ((𝑦 <Q 𝑞𝑧Q) → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞))
1514expcom 115 . . . . . . . . . . . . . . . . 17 (𝑧Q → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
1613, 15syl 14 . . . . . . . . . . . . . . . 16 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
1716adantr 274 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
18 prltlu 7428 . . . . . . . . . . . . . . . . . . . 20 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑦) ∈ (1st𝐴) ∧ 𝑧 ∈ (2nd𝐴)) → (*Q𝑦) <Q 𝑧)
1911, 18syl3an1 1261 . . . . . . . . . . . . . . . . . . 19 ((𝐴P ∧ (*Q𝑦) ∈ (1st𝐴) ∧ 𝑧 ∈ (2nd𝐴)) → (*Q𝑦) <Q 𝑧)
20193com23 1199 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧 ∈ (2nd𝐴) ∧ (*Q𝑦) ∈ (1st𝐴)) → (*Q𝑦) <Q 𝑧)
21203expia 1195 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (2nd𝐴)) → ((*Q𝑦) ∈ (1st𝐴) → (*Q𝑦) <Q 𝑧))
2221adantr 274 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (1st𝐴) → (*Q𝑦) <Q 𝑧))
23 ltmnqi 7344 . . . . . . . . . . . . . . . . . . . . 21 (((*Q𝑦) <Q 𝑧𝑦Q) → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧))
2423expcom 115 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → ((*Q𝑦) <Q 𝑧 → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧)))
2524adantr 274 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((*Q𝑦) <Q 𝑧 → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧)))
26 recidnq 7334 . . . . . . . . . . . . . . . . . . . . 21 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2726adantr 274 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q (*Q𝑦)) = 1Q)
28 mulcomnqg 7324 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2927, 28breq12d 3995 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧) ↔ 1Q <Q (𝑧 ·Q 𝑦)))
3025, 29sylibd 148 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑧Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3130ancoms 266 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑦Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3213, 31sylan 281 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3322, 32syld 45 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑦)))
3417, 33anim12d 333 . . . . . . . . . . . . . 14 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → ((𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞) ∧ 1Q <Q (𝑧 ·Q 𝑦))))
35 ltsonq 7339 . . . . . . . . . . . . . . . 16 <Q Or Q
3635, 8sotri 4999 . . . . . . . . . . . . . . 15 ((1Q <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)) → 1Q <Q (𝑧 ·Q 𝑞))
3736ancoms 266 . . . . . . . . . . . . . 14 (((𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞) ∧ 1Q <Q (𝑧 ·Q 𝑦)) → 1Q <Q (𝑧 ·Q 𝑞))
3834, 37syl6 33 . . . . . . . . . . . . 13 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
3938exp4b 365 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦Q → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞)))))
4010, 39syl5 32 . . . . . . . . . . 11 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞)))))
4140pm2.43d 50 . . . . . . . . . 10 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞))))
4241impd 252 . . . . . . . . 9 ((𝐴P𝑧 ∈ (2nd𝐴)) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
4342exlimdv 1807 . . . . . . . 8 ((𝐴P𝑧 ∈ (2nd𝐴)) → (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
447, 43syl5bi 151 . . . . . . 7 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑞 ∈ (2nd𝐵) → 1Q <Q (𝑧 ·Q 𝑞)))
45 breq2 3986 . . . . . . . 8 (𝑤 = (𝑧 ·Q 𝑞) → (1Q <Q 𝑤 ↔ 1Q <Q (𝑧 ·Q 𝑞)))
4645biimprcd 159 . . . . . . 7 (1Q <Q (𝑧 ·Q 𝑞) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤))
4744, 46syl6 33 . . . . . 6 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑞 ∈ (2nd𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤)))
4847expimpd 361 . . . . 5 (𝐴P → ((𝑧 ∈ (2nd𝐴) ∧ 𝑞 ∈ (2nd𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤)))
4948rexlimdvv 2590 . . . 4 (𝐴P → (∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤))
506, 49sylbid 149 . . 3 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) → 1Q <Q 𝑤))
51 1pru 7497 . . . 4 (2nd ‘1P) = {𝑤 ∣ 1Q <Q 𝑤}
5251abeq2i 2277 . . 3 (𝑤 ∈ (2nd ‘1P) ↔ 1Q <Q 𝑤)
5350, 52syl6ibr 161 . 2 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) → 𝑤 ∈ (2nd ‘1P)))
5453ssrdv 3148 1 (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  {cab 2151  wrex 2445  wss 3116  cop 3579   class class class wbr 3982  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Qcnq 7221  1Qc1q 7222   ·Q cmq 7224  *Qcrq 7225   <Q cltq 7226  Pcnp 7232  1Pc1p 7233   ·P cmp 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-i1p 7408  df-imp 7410
This theorem is referenced by:  recexprlemex  7578
  Copyright terms: Public domain W3C validator