ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemss1u GIF version

Theorem recexprlemss1u 7468
Description: The upper cut of 𝐴 ·P 𝐵 is a subset of the upper cut of one. Lemma for recexpr 7470. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemss1u (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemss1u
Dummy variables 𝑞 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlempr 7464 . . . . 5 (𝐴P𝐵P)
3 df-imp 7301 . . . . . 6 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
4 mulclnq 7208 . . . . . 6 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelvu 7345 . . . . 5 ((𝐴P𝐵P) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞)))
62, 5mpdan 418 . . . 4 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞)))
71recexprlemelu 7455 . . . . . . . 8 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
8 ltrelnq 7197 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
98brel 4599 . . . . . . . . . . . . 13 (𝑦 <Q 𝑞 → (𝑦Q𝑞Q))
109simpld 111 . . . . . . . . . . . 12 (𝑦 <Q 𝑞𝑦Q)
11 prop 7307 . . . . . . . . . . . . . . . . . 18 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 elprnqu 7314 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
1311, 12sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
14 ltmnqi 7235 . . . . . . . . . . . . . . . . . 18 ((𝑦 <Q 𝑞𝑧Q) → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞))
1514expcom 115 . . . . . . . . . . . . . . . . 17 (𝑧Q → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
1613, 15syl 14 . . . . . . . . . . . . . . . 16 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
1716adantr 274 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
18 prltlu 7319 . . . . . . . . . . . . . . . . . . . 20 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑦) ∈ (1st𝐴) ∧ 𝑧 ∈ (2nd𝐴)) → (*Q𝑦) <Q 𝑧)
1911, 18syl3an1 1250 . . . . . . . . . . . . . . . . . . 19 ((𝐴P ∧ (*Q𝑦) ∈ (1st𝐴) ∧ 𝑧 ∈ (2nd𝐴)) → (*Q𝑦) <Q 𝑧)
20193com23 1188 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧 ∈ (2nd𝐴) ∧ (*Q𝑦) ∈ (1st𝐴)) → (*Q𝑦) <Q 𝑧)
21203expia 1184 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (2nd𝐴)) → ((*Q𝑦) ∈ (1st𝐴) → (*Q𝑦) <Q 𝑧))
2221adantr 274 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (1st𝐴) → (*Q𝑦) <Q 𝑧))
23 ltmnqi 7235 . . . . . . . . . . . . . . . . . . . . 21 (((*Q𝑦) <Q 𝑧𝑦Q) → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧))
2423expcom 115 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → ((*Q𝑦) <Q 𝑧 → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧)))
2524adantr 274 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((*Q𝑦) <Q 𝑧 → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧)))
26 recidnq 7225 . . . . . . . . . . . . . . . . . . . . 21 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2726adantr 274 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q (*Q𝑦)) = 1Q)
28 mulcomnqg 7215 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2927, 28breq12d 3950 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧) ↔ 1Q <Q (𝑧 ·Q 𝑦)))
3025, 29sylibd 148 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑧Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3130ancoms 266 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑦Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3213, 31sylan 281 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3322, 32syld 45 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑦)))
3417, 33anim12d 333 . . . . . . . . . . . . . 14 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → ((𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞) ∧ 1Q <Q (𝑧 ·Q 𝑦))))
35 ltsonq 7230 . . . . . . . . . . . . . . . 16 <Q Or Q
3635, 8sotri 4942 . . . . . . . . . . . . . . 15 ((1Q <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)) → 1Q <Q (𝑧 ·Q 𝑞))
3736ancoms 266 . . . . . . . . . . . . . 14 (((𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞) ∧ 1Q <Q (𝑧 ·Q 𝑦)) → 1Q <Q (𝑧 ·Q 𝑞))
3834, 37syl6 33 . . . . . . . . . . . . 13 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
3938exp4b 365 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦Q → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞)))))
4010, 39syl5 32 . . . . . . . . . . 11 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞)))))
4140pm2.43d 50 . . . . . . . . . 10 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞))))
4241impd 252 . . . . . . . . 9 ((𝐴P𝑧 ∈ (2nd𝐴)) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
4342exlimdv 1792 . . . . . . . 8 ((𝐴P𝑧 ∈ (2nd𝐴)) → (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
447, 43syl5bi 151 . . . . . . 7 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑞 ∈ (2nd𝐵) → 1Q <Q (𝑧 ·Q 𝑞)))
45 breq2 3941 . . . . . . . 8 (𝑤 = (𝑧 ·Q 𝑞) → (1Q <Q 𝑤 ↔ 1Q <Q (𝑧 ·Q 𝑞)))
4645biimprcd 159 . . . . . . 7 (1Q <Q (𝑧 ·Q 𝑞) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤))
4744, 46syl6 33 . . . . . 6 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑞 ∈ (2nd𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤)))
4847expimpd 361 . . . . 5 (𝐴P → ((𝑧 ∈ (2nd𝐴) ∧ 𝑞 ∈ (2nd𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤)))
4948rexlimdvv 2559 . . . 4 (𝐴P → (∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤))
506, 49sylbid 149 . . 3 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) → 1Q <Q 𝑤))
51 1pru 7388 . . . 4 (2nd ‘1P) = {𝑤 ∣ 1Q <Q 𝑤}
5251abeq2i 2251 . . 3 (𝑤 ∈ (2nd ‘1P) ↔ 1Q <Q 𝑤)
5350, 52syl6ibr 161 . 2 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) → 𝑤 ∈ (2nd ‘1P)))
5453ssrdv 3108 1 (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wex 1469  wcel 1481  {cab 2126  wrex 2418  wss 3076  cop 3535   class class class wbr 3937  cfv 5131  (class class class)co 5782  1st c1st 6044  2nd c2nd 6045  Qcnq 7112  1Qc1q 7113   ·Q cmq 7115  *Qcrq 7116   <Q cltq 7117  Pcnp 7123  1Pc1p 7124   ·P cmp 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-i1p 7299  df-imp 7301
This theorem is referenced by:  recexprlemex  7469
  Copyright terms: Public domain W3C validator