ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemss1u GIF version

Theorem recexprlemss1u 7748
Description: The upper cut of 𝐴 ·P 𝐵 is a subset of the upper cut of one. Lemma for recexpr 7750. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemss1u (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemss1u
Dummy variables 𝑞 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlempr 7744 . . . . 5 (𝐴P𝐵P)
3 df-imp 7581 . . . . . 6 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
4 mulclnq 7488 . . . . . 6 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelvu 7625 . . . . 5 ((𝐴P𝐵P) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞)))
62, 5mpdan 421 . . . 4 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞)))
71recexprlemelu 7735 . . . . . . . 8 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
8 ltrelnq 7477 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
98brel 4726 . . . . . . . . . . . . 13 (𝑦 <Q 𝑞 → (𝑦Q𝑞Q))
109simpld 112 . . . . . . . . . . . 12 (𝑦 <Q 𝑞𝑦Q)
11 prop 7587 . . . . . . . . . . . . . . . . . 18 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 elprnqu 7594 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
1311, 12sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
14 ltmnqi 7515 . . . . . . . . . . . . . . . . . 18 ((𝑦 <Q 𝑞𝑧Q) → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞))
1514expcom 116 . . . . . . . . . . . . . . . . 17 (𝑧Q → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
1613, 15syl 14 . . . . . . . . . . . . . . . 16 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
1716adantr 276 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
18 prltlu 7599 . . . . . . . . . . . . . . . . . . . 20 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑦) ∈ (1st𝐴) ∧ 𝑧 ∈ (2nd𝐴)) → (*Q𝑦) <Q 𝑧)
1911, 18syl3an1 1282 . . . . . . . . . . . . . . . . . . 19 ((𝐴P ∧ (*Q𝑦) ∈ (1st𝐴) ∧ 𝑧 ∈ (2nd𝐴)) → (*Q𝑦) <Q 𝑧)
20193com23 1211 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧 ∈ (2nd𝐴) ∧ (*Q𝑦) ∈ (1st𝐴)) → (*Q𝑦) <Q 𝑧)
21203expia 1207 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (2nd𝐴)) → ((*Q𝑦) ∈ (1st𝐴) → (*Q𝑦) <Q 𝑧))
2221adantr 276 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (1st𝐴) → (*Q𝑦) <Q 𝑧))
23 ltmnqi 7515 . . . . . . . . . . . . . . . . . . . . 21 (((*Q𝑦) <Q 𝑧𝑦Q) → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧))
2423expcom 116 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → ((*Q𝑦) <Q 𝑧 → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧)))
2524adantr 276 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((*Q𝑦) <Q 𝑧 → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧)))
26 recidnq 7505 . . . . . . . . . . . . . . . . . . . . 21 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2726adantr 276 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q (*Q𝑦)) = 1Q)
28 mulcomnqg 7495 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2927, 28breq12d 4056 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧) ↔ 1Q <Q (𝑧 ·Q 𝑦)))
3025, 29sylibd 149 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑧Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3130ancoms 268 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑦Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3213, 31sylan 283 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3322, 32syld 45 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑦)))
3417, 33anim12d 335 . . . . . . . . . . . . . 14 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → ((𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞) ∧ 1Q <Q (𝑧 ·Q 𝑦))))
35 ltsonq 7510 . . . . . . . . . . . . . . . 16 <Q Or Q
3635, 8sotri 5077 . . . . . . . . . . . . . . 15 ((1Q <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)) → 1Q <Q (𝑧 ·Q 𝑞))
3736ancoms 268 . . . . . . . . . . . . . 14 (((𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞) ∧ 1Q <Q (𝑧 ·Q 𝑦)) → 1Q <Q (𝑧 ·Q 𝑞))
3834, 37syl6 33 . . . . . . . . . . . . 13 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
3938exp4b 367 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦Q → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞)))))
4010, 39syl5 32 . . . . . . . . . . 11 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞)))))
4140pm2.43d 50 . . . . . . . . . 10 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞))))
4241impd 254 . . . . . . . . 9 ((𝐴P𝑧 ∈ (2nd𝐴)) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
4342exlimdv 1841 . . . . . . . 8 ((𝐴P𝑧 ∈ (2nd𝐴)) → (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
447, 43biimtrid 152 . . . . . . 7 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑞 ∈ (2nd𝐵) → 1Q <Q (𝑧 ·Q 𝑞)))
45 breq2 4047 . . . . . . . 8 (𝑤 = (𝑧 ·Q 𝑞) → (1Q <Q 𝑤 ↔ 1Q <Q (𝑧 ·Q 𝑞)))
4645biimprcd 160 . . . . . . 7 (1Q <Q (𝑧 ·Q 𝑞) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤))
4744, 46syl6 33 . . . . . 6 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑞 ∈ (2nd𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤)))
4847expimpd 363 . . . . 5 (𝐴P → ((𝑧 ∈ (2nd𝐴) ∧ 𝑞 ∈ (2nd𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤)))
4948rexlimdvv 2629 . . . 4 (𝐴P → (∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤))
506, 49sylbid 150 . . 3 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) → 1Q <Q 𝑤))
51 1pru 7668 . . . 4 (2nd ‘1P) = {𝑤 ∣ 1Q <Q 𝑤}
5251abeq2i 2315 . . 3 (𝑤 ∈ (2nd ‘1P) ↔ 1Q <Q 𝑤)
5350, 52imbitrrdi 162 . 2 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) → 𝑤 ∈ (2nd ‘1P)))
5453ssrdv 3198 1 (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wex 1514  wcel 2175  {cab 2190  wrex 2484  wss 3165  cop 3635   class class class wbr 4043  cfv 5270  (class class class)co 5943  1st c1st 6223  2nd c2nd 6224  Qcnq 7392  1Qc1q 7393   ·Q cmq 7395  *Qcrq 7396   <Q cltq 7397  Pcnp 7403  1Pc1p 7404   ·P cmp 7406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-inp 7578  df-i1p 7579  df-imp 7581
This theorem is referenced by:  recexprlemex  7749
  Copyright terms: Public domain W3C validator