ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemss1u GIF version

Theorem recexprlemss1u 7098
Description: The upper cut of 𝐴 ·P 𝐵 is a subset of the upper cut of one. Lemma for recexpr 7100. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlemss1u (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlemss1u
Dummy variables 𝑞 𝑧 𝑤 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . . . 6 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
21recexprlempr 7094 . . . . 5 (𝐴P𝐵P)
3 df-imp 6931 . . . . . 6 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
4 mulclnq 6838 . . . . . 6 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
53, 4genpelvu 6975 . . . . 5 ((𝐴P𝐵P) → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞)))
62, 5mpdan 412 . . . 4 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞)))
71recexprlemelu 7085 . . . . . . . 8 (𝑞 ∈ (2nd𝐵) ↔ ∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)))
8 ltrelnq 6827 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
98brel 4448 . . . . . . . . . . . . 13 (𝑦 <Q 𝑞 → (𝑦Q𝑞Q))
109simpld 110 . . . . . . . . . . . 12 (𝑦 <Q 𝑞𝑦Q)
11 prop 6937 . . . . . . . . . . . . . . . . . 18 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 elprnqu 6944 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
1311, 12sylan 277 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (2nd𝐴)) → 𝑧Q)
14 ltmnqi 6865 . . . . . . . . . . . . . . . . . 18 ((𝑦 <Q 𝑞𝑧Q) → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞))
1514expcom 114 . . . . . . . . . . . . . . . . 17 (𝑧Q → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
1613, 15syl 14 . . . . . . . . . . . . . . . 16 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
1716adantr 270 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → (𝑦 <Q 𝑞 → (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)))
18 prltlu 6949 . . . . . . . . . . . . . . . . . . . 20 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (*Q𝑦) ∈ (1st𝐴) ∧ 𝑧 ∈ (2nd𝐴)) → (*Q𝑦) <Q 𝑧)
1911, 18syl3an1 1203 . . . . . . . . . . . . . . . . . . 19 ((𝐴P ∧ (*Q𝑦) ∈ (1st𝐴) ∧ 𝑧 ∈ (2nd𝐴)) → (*Q𝑦) <Q 𝑧)
20193com23 1145 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝑧 ∈ (2nd𝐴) ∧ (*Q𝑦) ∈ (1st𝐴)) → (*Q𝑦) <Q 𝑧)
21203expia 1141 . . . . . . . . . . . . . . . . 17 ((𝐴P𝑧 ∈ (2nd𝐴)) → ((*Q𝑦) ∈ (1st𝐴) → (*Q𝑦) <Q 𝑧))
2221adantr 270 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (1st𝐴) → (*Q𝑦) <Q 𝑧))
23 ltmnqi 6865 . . . . . . . . . . . . . . . . . . . . 21 (((*Q𝑦) <Q 𝑧𝑦Q) → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧))
2423expcom 114 . . . . . . . . . . . . . . . . . . . 20 (𝑦Q → ((*Q𝑦) <Q 𝑧 → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧)))
2524adantr 270 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((*Q𝑦) <Q 𝑧 → (𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧)))
26 recidnq 6855 . . . . . . . . . . . . . . . . . . . . 21 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
2726adantr 270 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q (*Q𝑦)) = 1Q)
28 mulcomnqg 6845 . . . . . . . . . . . . . . . . . . . 20 ((𝑦Q𝑧Q) → (𝑦 ·Q 𝑧) = (𝑧 ·Q 𝑦))
2927, 28breq12d 3824 . . . . . . . . . . . . . . . . . . 19 ((𝑦Q𝑧Q) → ((𝑦 ·Q (*Q𝑦)) <Q (𝑦 ·Q 𝑧) ↔ 1Q <Q (𝑧 ·Q 𝑦)))
3025, 29sylibd 147 . . . . . . . . . . . . . . . . . 18 ((𝑦Q𝑧Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3130ancoms 264 . . . . . . . . . . . . . . . . 17 ((𝑧Q𝑦Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3213, 31sylan 277 . . . . . . . . . . . . . . . 16 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) <Q 𝑧 → 1Q <Q (𝑧 ·Q 𝑦)))
3322, 32syld 44 . . . . . . . . . . . . . . 15 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑦)))
3417, 33anim12d 328 . . . . . . . . . . . . . 14 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → ((𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞) ∧ 1Q <Q (𝑧 ·Q 𝑦))))
35 ltsonq 6860 . . . . . . . . . . . . . . . 16 <Q Or Q
3635, 8sotri 4782 . . . . . . . . . . . . . . 15 ((1Q <Q (𝑧 ·Q 𝑦) ∧ (𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞)) → 1Q <Q (𝑧 ·Q 𝑞))
3736ancoms 264 . . . . . . . . . . . . . 14 (((𝑧 ·Q 𝑦) <Q (𝑧 ·Q 𝑞) ∧ 1Q <Q (𝑧 ·Q 𝑦)) → 1Q <Q (𝑧 ·Q 𝑞))
3834, 37syl6 33 . . . . . . . . . . . . 13 (((𝐴P𝑧 ∈ (2nd𝐴)) ∧ 𝑦Q) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
3938exp4b 359 . . . . . . . . . . . 12 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦Q → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞)))))
4010, 39syl5 32 . . . . . . . . . . 11 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞)))))
4140pm2.43d 49 . . . . . . . . . 10 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑦 <Q 𝑞 → ((*Q𝑦) ∈ (1st𝐴) → 1Q <Q (𝑧 ·Q 𝑞))))
4241impd 251 . . . . . . . . 9 ((𝐴P𝑧 ∈ (2nd𝐴)) → ((𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
4342exlimdv 1742 . . . . . . . 8 ((𝐴P𝑧 ∈ (2nd𝐴)) → (∃𝑦(𝑦 <Q 𝑞 ∧ (*Q𝑦) ∈ (1st𝐴)) → 1Q <Q (𝑧 ·Q 𝑞)))
447, 43syl5bi 150 . . . . . . 7 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑞 ∈ (2nd𝐵) → 1Q <Q (𝑧 ·Q 𝑞)))
45 breq2 3815 . . . . . . . 8 (𝑤 = (𝑧 ·Q 𝑞) → (1Q <Q 𝑤 ↔ 1Q <Q (𝑧 ·Q 𝑞)))
4645biimprcd 158 . . . . . . 7 (1Q <Q (𝑧 ·Q 𝑞) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤))
4744, 46syl6 33 . . . . . 6 ((𝐴P𝑧 ∈ (2nd𝐴)) → (𝑞 ∈ (2nd𝐵) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤)))
4847expimpd 355 . . . . 5 (𝐴P → ((𝑧 ∈ (2nd𝐴) ∧ 𝑞 ∈ (2nd𝐵)) → (𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤)))
4948rexlimdvv 2489 . . . 4 (𝐴P → (∃𝑧 ∈ (2nd𝐴)∃𝑞 ∈ (2nd𝐵)𝑤 = (𝑧 ·Q 𝑞) → 1Q <Q 𝑤))
506, 49sylbid 148 . . 3 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) → 1Q <Q 𝑤))
51 1pru 7018 . . . 4 (2nd ‘1P) = {𝑤 ∣ 1Q <Q 𝑤}
5251abeq2i 2193 . . 3 (𝑤 ∈ (2nd ‘1P) ↔ 1Q <Q 𝑤)
5350, 52syl6ibr 160 . 2 (𝐴P → (𝑤 ∈ (2nd ‘(𝐴 ·P 𝐵)) → 𝑤 ∈ (2nd ‘1P)))
5453ssrdv 3016 1 (𝐴P → (2nd ‘(𝐴 ·P 𝐵)) ⊆ (2nd ‘1P))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wex 1422  wcel 1434  {cab 2069  wrex 2354  wss 2984  cop 3425   class class class wbr 3811  cfv 4969  (class class class)co 5591  1st c1st 5844  2nd c2nd 5845  Qcnq 6742  1Qc1q 6743   ·Q cmq 6745  *Qcrq 6746   <Q cltq 6747  Pcnp 6753  1Pc1p 6754   ·P cmp 6756
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-po 4087  df-iso 4088  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-rq 6814  df-ltnqqs 6815  df-inp 6928  df-i1p 6929  df-imp 6931
This theorem is referenced by:  recexprlemex  7099
  Copyright terms: Public domain W3C validator