![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brdomg | GIF version |
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
brdomg | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 6799 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 4702 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
3 | 2 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 → 𝐴 ∈ V)) |
4 | f1f 5459 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) | |
5 | fdm 5409 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
6 | vex 2763 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
7 | 6 | dmex 4928 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
8 | 5, 7 | eqeltrrdi 2285 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
10 | 9 | exlimiv 1609 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
11 | 10 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V)) |
12 | f1eq2 5455 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝑦)) | |
13 | 12 | exbidv 1836 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝑦)) |
14 | f1eq3 5456 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝐵)) | |
15 | 14 | exbidv 1836 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
16 | df-dom 6796 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
17 | 13, 15, 16 | brabg 4299 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐶) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
18 | 17 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
19 | 3, 11, 18 | pm5.21ndd 706 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 class class class wbr 4029 dom cdm 4659 ⟶wf 5250 –1-1→wf1 5251 ≼ cdom 6793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-dm 4669 df-rn 4670 df-fn 5257 df-f 5258 df-f1 5259 df-dom 6796 |
This theorem is referenced by: brdomi 6803 brdom 6804 f1dom2g 6810 f1domg 6812 dom3d 6828 phplem4dom 6918 djudom 7152 difinfsn 7159 djudoml 7279 djudomr 7280 nninfdc 12610 |
Copyright terms: Public domain | W3C validator |