| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brdomg | GIF version | ||
| Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| brdomg | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 6855 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 4736 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 → 𝐴 ∈ V)) |
| 4 | f1f 5503 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) | |
| 5 | fdm 5451 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 6 | vex 2779 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 7 | 6 | dmex 4964 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 8 | 5, 7 | eqeltrrdi 2299 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 10 | 9 | exlimiv 1622 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 11 | 10 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V)) |
| 12 | f1eq2 5499 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝑦)) | |
| 13 | 12 | exbidv 1849 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝑦)) |
| 14 | f1eq3 5500 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝐵)) | |
| 15 | 14 | exbidv 1849 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 16 | df-dom 6852 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 17 | 13, 15, 16 | brabg 4333 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐶) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 18 | 17 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
| 19 | 3, 11, 18 | pm5.21ndd 707 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2178 Vcvv 2776 class class class wbr 4059 dom cdm 4693 ⟶wf 5286 –1-1→wf1 5287 ≼ cdom 6849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 df-fn 5293 df-f 5294 df-f1 5295 df-dom 6852 |
| This theorem is referenced by: brdomi 6861 brdom 6862 f1dom2g 6870 f1domg 6872 dom3d 6888 phplem4dom 6984 djudom 7221 difinfsn 7228 djudoml 7362 djudomr 7363 nninfdc 12939 dom1o 16128 |
| Copyright terms: Public domain | W3C validator |