Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > brdomg | GIF version |
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
brdomg | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 6723 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex1i 4654 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
3 | 2 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 → 𝐴 ∈ V)) |
4 | f1f 5403 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) | |
5 | fdm 5353 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
6 | vex 2733 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
7 | 6 | dmex 4877 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
8 | 5, 7 | eqeltrrdi 2262 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
10 | 9 | exlimiv 1591 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
11 | 10 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V)) |
12 | f1eq2 5399 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝑦)) | |
13 | 12 | exbidv 1818 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝑦)) |
14 | f1eq3 5400 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝐵)) | |
15 | 14 | exbidv 1818 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
16 | df-dom 6720 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
17 | 13, 15, 16 | brabg 4254 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐶) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
18 | 17 | expcom 115 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
19 | 3, 11, 18 | pm5.21ndd 700 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 class class class wbr 3989 dom cdm 4611 ⟶wf 5194 –1-1→wf1 5195 ≼ cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-dm 4621 df-rn 4622 df-fn 5201 df-f 5202 df-f1 5203 df-dom 6720 |
This theorem is referenced by: brdomi 6727 brdom 6728 f1dom2g 6734 f1domg 6736 dom3d 6752 phplem4dom 6840 djudom 7070 difinfsn 7077 djudoml 7196 djudomr 7197 nninfdc 12408 |
Copyright terms: Public domain | W3C validator |