| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brdomg | GIF version | ||
| Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| brdomg | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 6831 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 4717 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 → 𝐴 ∈ V)) |
| 4 | f1f 5480 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) | |
| 5 | fdm 5430 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 6 | vex 2774 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 7 | 6 | dmex 4944 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 8 | 5, 7 | eqeltrrdi 2296 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 10 | 9 | exlimiv 1620 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 11 | 10 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V)) |
| 12 | f1eq2 5476 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝑦)) | |
| 13 | 12 | exbidv 1847 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝑦)) |
| 14 | f1eq3 5477 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝐵)) | |
| 15 | 14 | exbidv 1847 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 16 | df-dom 6828 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 17 | 13, 15, 16 | brabg 4314 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐶) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 18 | 17 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
| 19 | 3, 11, 18 | pm5.21ndd 706 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∃wex 1514 ∈ wcel 2175 Vcvv 2771 class class class wbr 4043 dom cdm 4674 ⟶wf 5266 –1-1→wf1 5267 ≼ cdom 6825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-xp 4680 df-rel 4681 df-cnv 4682 df-dm 4684 df-rn 4685 df-fn 5273 df-f 5274 df-f1 5275 df-dom 6828 |
| This theorem is referenced by: brdomi 6837 brdom 6838 f1dom2g 6846 f1domg 6848 dom3d 6864 phplem4dom 6958 djudom 7194 difinfsn 7201 djudoml 7330 djudomr 7331 nninfdc 12795 |
| Copyright terms: Public domain | W3C validator |