ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdomg GIF version

Theorem brdomg 6762
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
brdomg (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem brdomg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6759 . . . 4 Rel ≼
21brrelex1i 4681 . . 3 (𝐴𝐵𝐴 ∈ V)
32a1i 9 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 ∈ V))
4 f1f 5433 . . . . 5 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
5 fdm 5383 . . . . . 6 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
6 vex 2752 . . . . . . 7 𝑓 ∈ V
76dmex 4905 . . . . . 6 dom 𝑓 ∈ V
85, 7eqeltrrdi 2279 . . . . 5 (𝑓:𝐴𝐵𝐴 ∈ V)
94, 8syl 14 . . . 4 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
109exlimiv 1608 . . 3 (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V)
1110a1i 9 . 2 (𝐵𝐶 → (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V))
12 f1eq2 5429 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1𝑦𝑓:𝐴1-1𝑦))
1312exbidv 1835 . . . 4 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦))
14 f1eq3 5430 . . . . 5 (𝑦 = 𝐵 → (𝑓:𝐴1-1𝑦𝑓:𝐴1-1𝐵))
1514exbidv 1835 . . . 4 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
16 df-dom 6756 . . . 4 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
1713, 15, 16brabg 4281 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1817expcom 116 . 2 (𝐵𝐶 → (𝐴 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
193, 11, 18pm5.21ndd 706 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1363  wex 1502  wcel 2158  Vcvv 2749   class class class wbr 4015  dom cdm 4638  wf 5224  1-1wf1 5225  cdom 6753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-xp 4644  df-rel 4645  df-cnv 4646  df-dm 4648  df-rn 4649  df-fn 5231  df-f 5232  df-f1 5233  df-dom 6756
This theorem is referenced by:  brdomi  6763  brdom  6764  f1dom2g  6770  f1domg  6772  dom3d  6788  phplem4dom  6876  djudom  7106  difinfsn  7113  djudoml  7232  djudomr  7233  nninfdc  12468
  Copyright terms: Public domain W3C validator