| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > brdomg | GIF version | ||
| Description: Dominance relation. (Contributed by NM, 15-Jun-1998.) |
| Ref | Expression |
|---|---|
| brdomg | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 6804 | . . . 4 ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i 4706 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐴 ∈ V) |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 → 𝐴 ∈ V)) |
| 4 | f1f 5463 | . . . . 5 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝑓:𝐴⟶𝐵) | |
| 5 | fdm 5413 | . . . . . 6 ⊢ (𝑓:𝐴⟶𝐵 → dom 𝑓 = 𝐴) | |
| 6 | vex 2766 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
| 7 | 6 | dmex 4932 | . . . . . 6 ⊢ dom 𝑓 ∈ V |
| 8 | 5, 7 | eqeltrrdi 2288 | . . . . 5 ⊢ (𝑓:𝐴⟶𝐵 → 𝐴 ∈ V) |
| 9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 10 | 9 | exlimiv 1612 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V) |
| 11 | 10 | a1i 9 | . 2 ⊢ (𝐵 ∈ 𝐶 → (∃𝑓 𝑓:𝐴–1-1→𝐵 → 𝐴 ∈ V)) |
| 12 | f1eq2 5459 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝑦)) | |
| 13 | 12 | exbidv 1839 | . . . 4 ⊢ (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝑦)) |
| 14 | f1eq3 5460 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑓:𝐴–1-1→𝑦 ↔ 𝑓:𝐴–1-1→𝐵)) | |
| 15 | 14 | exbidv 1839 | . . . 4 ⊢ (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴–1-1→𝑦 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 16 | df-dom 6801 | . . . 4 ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} | |
| 17 | 13, 15, 16 | brabg 4303 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝐶) → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| 18 | 17 | expcom 116 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵))) |
| 19 | 3, 11, 18 | pm5.21ndd 706 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 dom cdm 4663 ⟶wf 5254 –1-1→wf1 5255 ≼ cdom 6798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-fn 5261 df-f 5262 df-f1 5263 df-dom 6801 |
| This theorem is referenced by: brdomi 6808 brdom 6809 f1dom2g 6815 f1domg 6817 dom3d 6833 phplem4dom 6923 djudom 7159 difinfsn 7166 djudoml 7286 djudomr 7287 nninfdc 12670 |
| Copyright terms: Public domain | W3C validator |