ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdomg GIF version

Theorem brdomg 6895
Description: Dominance relation. (Contributed by NM, 15-Jun-1998.)
Assertion
Ref Expression
brdomg (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hint:   𝐶(𝑓)

Proof of Theorem brdomg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldom 6890 . . . 4 Rel ≼
21brrelex1i 4761 . . 3 (𝐴𝐵𝐴 ∈ V)
32a1i 9 . 2 (𝐵𝐶 → (𝐴𝐵𝐴 ∈ V))
4 f1f 5530 . . . . 5 (𝑓:𝐴1-1𝐵𝑓:𝐴𝐵)
5 fdm 5478 . . . . . 6 (𝑓:𝐴𝐵 → dom 𝑓 = 𝐴)
6 vex 2802 . . . . . . 7 𝑓 ∈ V
76dmex 4990 . . . . . 6 dom 𝑓 ∈ V
85, 7eqeltrrdi 2321 . . . . 5 (𝑓:𝐴𝐵𝐴 ∈ V)
94, 8syl 14 . . . 4 (𝑓:𝐴1-1𝐵𝐴 ∈ V)
109exlimiv 1644 . . 3 (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V)
1110a1i 9 . 2 (𝐵𝐶 → (∃𝑓 𝑓:𝐴1-1𝐵𝐴 ∈ V))
12 f1eq2 5526 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1𝑦𝑓:𝐴1-1𝑦))
1312exbidv 1871 . . . 4 (𝑥 = 𝐴 → (∃𝑓 𝑓:𝑥1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝑦))
14 f1eq3 5527 . . . . 5 (𝑦 = 𝐵 → (𝑓:𝐴1-1𝑦𝑓:𝐴1-1𝐵))
1514exbidv 1871 . . . 4 (𝑦 = 𝐵 → (∃𝑓 𝑓:𝐴1-1𝑦 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
16 df-dom 6887 . . . 4 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
1713, 15, 16brabg 4356 . . 3 ((𝐴 ∈ V ∧ 𝐵𝐶) → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
1817expcom 116 . 2 (𝐵𝐶 → (𝐴 ∈ V → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵)))
193, 11, 18pm5.21ndd 710 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wex 1538  wcel 2200  Vcvv 2799   class class class wbr 4082  dom cdm 4718  wf 5313  1-1wf1 5314  cdom 6884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-fn 5320  df-f 5321  df-f1 5322  df-dom 6887
This theorem is referenced by:  brdomi  6896  brdom  6897  f1dom2g  6905  f1domg  6907  dom3d  6923  phplem4dom  7019  djudom  7256  difinfsn  7263  djudoml  7397  djudomr  7398  nninfdc  13019  dom1o  16314
  Copyright terms: Public domain W3C validator