ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1eq123d GIF version

Theorem f1eq123d 5425
Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
f1eq123d (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐵1-1𝐷))

Proof of Theorem f1eq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 f1eq1 5388 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐶𝐺:𝐴1-1𝐶))
31, 2syl 14 . 2 (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐴1-1𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 f1eq2 5389 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴1-1𝐶𝐺:𝐵1-1𝐶))
64, 5syl 14 . 2 (𝜑 → (𝐺:𝐴1-1𝐶𝐺:𝐵1-1𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 f1eq3 5390 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵1-1𝐶𝐺:𝐵1-1𝐷))
97, 8syl 14 . 2 (𝜑 → (𝐺:𝐵1-1𝐶𝐺:𝐵1-1𝐷))
103, 6, 93bitrd 213 1 (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐵1-1𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  1-1wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator