ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1 GIF version

Theorem nff1 5449
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1.1 𝑥𝐹
nff1.2 𝑥𝐴
nff1.3 𝑥𝐵
Assertion
Ref Expression
nff1 𝑥 𝐹:𝐴1-1𝐵

Proof of Theorem nff1
StepHypRef Expression
1 df-f1 5251 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
2 nff1.1 . . . 4 𝑥𝐹
3 nff1.2 . . . 4 𝑥𝐴
4 nff1.3 . . . 4 𝑥𝐵
52, 3, 4nff 5392 . . 3 𝑥 𝐹:𝐴𝐵
62nfcnv 4835 . . . 4 𝑥𝐹
76nffun 5269 . . 3 𝑥Fun 𝐹
85, 7nfan 1576 . 2 𝑥(𝐹:𝐴𝐵 ∧ Fun 𝐹)
91, 8nfxfr 1485 1 𝑥 𝐹:𝐴1-1𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1471  wnfc 2323  ccnv 4654  Fun wfun 5240  wf 5242  1-1wf1 5243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251
This theorem is referenced by:  nff1o  5490
  Copyright terms: Public domain W3C validator