ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1 GIF version

Theorem nff1 5391
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1.1 𝑥𝐹
nff1.2 𝑥𝐴
nff1.3 𝑥𝐵
Assertion
Ref Expression
nff1 𝑥 𝐹:𝐴1-1𝐵

Proof of Theorem nff1
StepHypRef Expression
1 df-f1 5193 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
2 nff1.1 . . . 4 𝑥𝐹
3 nff1.2 . . . 4 𝑥𝐴
4 nff1.3 . . . 4 𝑥𝐵
52, 3, 4nff 5334 . . 3 𝑥 𝐹:𝐴𝐵
62nfcnv 4783 . . . 4 𝑥𝐹
76nffun 5211 . . 3 𝑥Fun 𝐹
85, 7nfan 1553 . 2 𝑥(𝐹:𝐴𝐵 ∧ Fun 𝐹)
91, 8nfxfr 1462 1 𝑥 𝐹:𝐴1-1𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wnf 1448  wnfc 2295  ccnv 4603  Fun wfun 5182  wf 5184  1-1wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193
This theorem is referenced by:  nff1o  5430
  Copyright terms: Public domain W3C validator