ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1 GIF version

Theorem nff1 5366
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1.1 𝑥𝐹
nff1.2 𝑥𝐴
nff1.3 𝑥𝐵
Assertion
Ref Expression
nff1 𝑥 𝐹:𝐴1-1𝐵

Proof of Theorem nff1
StepHypRef Expression
1 df-f1 5168 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
2 nff1.1 . . . 4 𝑥𝐹
3 nff1.2 . . . 4 𝑥𝐴
4 nff1.3 . . . 4 𝑥𝐵
52, 3, 4nff 5309 . . 3 𝑥 𝐹:𝐴𝐵
62nfcnv 4758 . . . 4 𝑥𝐹
76nffun 5186 . . 3 𝑥Fun 𝐹
85, 7nfan 1542 . 2 𝑥(𝐹:𝐴𝐵 ∧ Fun 𝐹)
91, 8nfxfr 1451 1 𝑥 𝐹:𝐴1-1𝐵
Colors of variables: wff set class
Syntax hints:  wa 103  wnf 1437  wnfc 2283  ccnv 4578  Fun wfun 5157  wf 5159  1-1wf1 5160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168
This theorem is referenced by:  nff1o  5405
  Copyright terms: Public domain W3C validator