ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1 GIF version

Theorem nff1 5434
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1.1 𝑥𝐹
nff1.2 𝑥𝐴
nff1.3 𝑥𝐵
Assertion
Ref Expression
nff1 𝑥 𝐹:𝐴1-1𝐵

Proof of Theorem nff1
StepHypRef Expression
1 df-f1 5236 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
2 nff1.1 . . . 4 𝑥𝐹
3 nff1.2 . . . 4 𝑥𝐴
4 nff1.3 . . . 4 𝑥𝐵
52, 3, 4nff 5377 . . 3 𝑥 𝐹:𝐴𝐵
62nfcnv 4821 . . . 4 𝑥𝐹
76nffun 5254 . . 3 𝑥Fun 𝐹
85, 7nfan 1576 . 2 𝑥(𝐹:𝐴𝐵 ∧ Fun 𝐹)
91, 8nfxfr 1485 1 𝑥 𝐹:𝐴1-1𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1471  wnfc 2319  ccnv 4640  Fun wfun 5225  wf 5227  1-1wf1 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236
This theorem is referenced by:  nff1o  5474
  Copyright terms: Public domain W3C validator