![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nff1 | GIF version |
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nff1.1 | ⊢ Ⅎ𝑥𝐹 |
nff1.2 | ⊢ Ⅎ𝑥𝐴 |
nff1.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff1 | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5251 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
2 | nff1.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff1.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nff1.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff 5392 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
6 | 2 | nfcnv 4835 | . . . 4 ⊢ Ⅎ𝑥◡𝐹 |
7 | 6 | nffun 5269 | . . 3 ⊢ Ⅎ𝑥Fun ◡𝐹 |
8 | 5, 7 | nfan 1576 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) |
9 | 1, 8 | nfxfr 1485 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 Ⅎwnf 1471 Ⅎwnfc 2323 ◡ccnv 4654 Fun wfun 5240 ⟶wf 5242 –1-1→wf1 5243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-rel 4662 df-cnv 4663 df-co 4664 df-dm 4665 df-rn 4666 df-fun 5248 df-fn 5249 df-f 5250 df-f1 5251 |
This theorem is referenced by: nff1o 5490 |
Copyright terms: Public domain | W3C validator |