| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nff1 | GIF version | ||
| Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| nff1.1 | ⊢ Ⅎ𝑥𝐹 |
| nff1.2 | ⊢ Ⅎ𝑥𝐴 |
| nff1.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff1 | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 5264 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 2 | nff1.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff1.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nff1.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff 5405 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| 6 | 2 | nfcnv 4846 | . . . 4 ⊢ Ⅎ𝑥◡𝐹 |
| 7 | 6 | nffun 5282 | . . 3 ⊢ Ⅎ𝑥Fun ◡𝐹 |
| 8 | 5, 7 | nfan 1579 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) |
| 9 | 1, 8 | nfxfr 1488 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 Ⅎwnf 1474 Ⅎwnfc 2326 ◡ccnv 4663 Fun wfun 5253 ⟶wf 5255 –1-1→wf1 5256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 |
| This theorem is referenced by: nff1o 5503 |
| Copyright terms: Public domain | W3C validator |