![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nff1 | GIF version |
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nff1.1 | ⊢ Ⅎ𝑥𝐹 |
nff1.2 | ⊢ Ⅎ𝑥𝐴 |
nff1.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff1 | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5236 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
2 | nff1.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff1.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nff1.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff 5377 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
6 | 2 | nfcnv 4821 | . . . 4 ⊢ Ⅎ𝑥◡𝐹 |
7 | 6 | nffun 5254 | . . 3 ⊢ Ⅎ𝑥Fun ◡𝐹 |
8 | 5, 7 | nfan 1576 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) |
9 | 1, 8 | nfxfr 1485 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 Ⅎwnf 1471 Ⅎwnfc 2319 ◡ccnv 4640 Fun wfun 5225 ⟶wf 5227 –1-1→wf1 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 |
This theorem is referenced by: nff1o 5474 |
Copyright terms: Public domain | W3C validator |