ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nff1 GIF version

Theorem nff1 5491
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1.1 𝑥𝐹
nff1.2 𝑥𝐴
nff1.3 𝑥𝐵
Assertion
Ref Expression
nff1 𝑥 𝐹:𝐴1-1𝐵

Proof of Theorem nff1
StepHypRef Expression
1 df-f1 5285 . 2 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
2 nff1.1 . . . 4 𝑥𝐹
3 nff1.2 . . . 4 𝑥𝐴
4 nff1.3 . . . 4 𝑥𝐵
52, 3, 4nff 5432 . . 3 𝑥 𝐹:𝐴𝐵
62nfcnv 4865 . . . 4 𝑥𝐹
76nffun 5303 . . 3 𝑥Fun 𝐹
85, 7nfan 1589 . 2 𝑥(𝐹:𝐴𝐵 ∧ Fun 𝐹)
91, 8nfxfr 1498 1 𝑥 𝐹:𝐴1-1𝐵
Colors of variables: wff set class
Syntax hints:  wa 104  wnf 1484  wnfc 2336  ccnv 4682  Fun wfun 5274  wf 5276  1-1wf1 5277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285
This theorem is referenced by:  nff1o  5532
  Copyright terms: Public domain W3C validator