| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq3 | GIF version | ||
| Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 3221 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | anbi2d 464 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | df-f 5284 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
| 4 | df-f 5284 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ⊆ wss 3170 ran crn 4684 Fn wfn 5275 ⟶wf 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3176 df-ss 3183 df-f 5284 |
| This theorem is referenced by: feq23 5421 feq3d 5424 feq123d 5426 fun2 5460 fconstg 5484 f1eq3 5490 fsng 5766 fsn2 5767 fsnunf 5797 mapvalg 6758 mapsn 6790 lmff 14796 txcn 14822 plyrecj 15310 |
| Copyright terms: Public domain | W3C validator |